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1. INTRODUCTION 

1.1. Aims of the Review 

In this article we have attempted to describe the 
process which is undertaken to obtain a plotted, data 
reduced Fourier transform NMR spectrum. Our aim 
has been to highlight the pitfalls which can cause a 
decrease in information content in a NMR spectrum 
which occurs simply because a digital signal pro- 
cessing domain is used. We have also used the op- 
portunity to summarise the various steps involved 
in taking a free induction decay from a NMR spec- 
trometer and turning it into a plotted, line-listed, 
integrated record on a chart. At each stage of this 
procedure a number of approximations and assump- 
tions are made and these are examined to see if they are 
justified. 

In the main, we have limited ourselves to the 
experiment of a pulse acquisition followed by Fourier 
transformation, and we have avoided except for com- 
parison purposes other forms of NMR signal pro- 
cessing such as rapid-scan correlation NMR(‘v’) 
and Hadamard transform methods.“) 

Some problems such as limited dynamic range or 
poor resolution can be overcome by designing new 
experiments such as the Redfield 214 pulse methodt4) 
for the former and the use of spinecho sequence@) 
for the latter. For fuller details of these methods and 
other techniques for optimisation of NMR 
spectrometer settings the reader is directed to other 
articles.(6*7) 

Similarly, we have avoided discussion of detailed 
computational methods for implementing different 
algorithms and for the precise nature of the compu- 
tations involved in an NMR data system the book by 
Cooper ‘s’ is most useful. At the other end of the scale 
an overview of NMR software has recently 
appeared.“’ 

We have also only briefly described the whole area 
of two-dimensional Fourier transformation as un- 
doubtedly this will be extensively reviewed in the near 
future. However, where special problems occur in two- 
dimensional NMR, such as for spectrum phase correc- 
tion,““’ these are described. 

In the section on digitisation, we have included the 
case of quadrature phase detection since this is now 
universally available on all modern research 
spectrometers. 

Finally, readers of this article will find no mention of 
any specific commercial spectrometer. If this is a 

disappointment to some users who had hoped to find 
specific details of their system, we make no apologies 
for this since we wished to remain perfectly general. 

1.2. FTNMR Computer Systems 

All Fourier transform NMR spectrometers use a 
dedicated minicomputer to process raw data from a 
spectrometer. Some computer systems simply consist 
of a core-resident FTNMR manipulation program 
which can control the acquisition of data from a 
number of different experiments (e.g. inversion- 
recovery, spin-echo sequences, etc.), process the FID 
including Fourier transformation and plot and,‘or 
display the result. Data reduction to give peak position 
print-out and integration is also standard. The next 
stage of development involves the use of a backing- 
store device (today usually disc-based) to store spectra 
and programs and this requires the addition of the 
capability that the FTNMR control segment can 
create files onto, and read files from the backing store. 
With a disc-based system it is then possible to remove 
the computer control segment from the FTNMR 
program and let it stand alone as an executive 
program. Only the executive or monitor program is 
now permanently resident in memory and can read 
from backing store any program which the user 
requires. This may be a spectrum simulation and 
fitting program or any routine for general calcula- 
tion. Sometimes PASCAL, BASIC interpreters, 
FORTRAN compilers, assemblers and editors are also 
available as are a number of computer games to while 
away the time until lunch! 

With the development oflarger minicomputer mem- 
ories came the possibility of performing two separate 
operations (e.g. acquisition plus FT) at the same time. 
This time-sharing, or foreground-background work- 
ing, using different memory blocks has the penalty that 
the foreground job is slowed down somewhat but that 
the background job, e.g. a continued acquisition, can 
continue concurrently. Up to this point, processing of 
NMR data precluded the acquisition of another 
spectrum and such time-shared working overcomes 
this. Alternative approaches are to use a micropro- 
cessor controlled acquisition scheme or to use a sep- 
arate processor for the data collection, both operat- 
ing in the background whilst data processing can be at 
the control of the operator. Most commercial spectro- 
meter manufacturers now offer advanced schemes 
which allow the user to control a number of jobs 



Digitisation and data processing in Fourier transform NMR 29 

concurrently in different memory areas with all para- 
meters such as pulse regime, spectrum width, observe 
and decouple frequencies, decoupler power, sample 
temperature and field homogeneity controls under 
computer control. Automated sequences of experi- 
ments are possible with updated values of a number of 
parameters taken from parameter lists. 

The next major development allowed the use of a 
disc backing store as a “virtual memory” for the 
acquisition, processing and output of spectral files 
larger than the computer memory. This opened the 
way for very large transforms on data tables up to say 
512k words. and similarly acquisitions into data 
tables many times larger than the available memory. 

With the development of a disc-based operating 
system this has recently allowed the operation of the 
most elaborate FTNMR computer system to date. In 
this mode of operation, the computer memory can be 
split into three parts each of which is assigned a job 
number. Similarly within each job the memory can be 
further subdivided and in each of these subdivisions a 
separate operation can be performed concurrently. 
Each operation is not limited to the memory available 
to it but is read to and written from the backing disc as 
necessary. 

For example in a 40k memory computer, it is 
possible to acquire concurrently a 64k data table and 
transform two previously acquired 64k FIDs. The 
options for effective simultaneous processing appear 
to be limited only by the number of peripheral 
keyboards, VDUs and plotters available and by the 
time penalty of what is still a time-sharing system. 

Finally a number of aspects of the dedicated NMR 
computer are being changed by the advent of micro- 
processors. For example the sine look-up table for the 
Fourier transform in one computer is held in ROM 
(read-only-memory). In another, the magnet shim 
settings for each probe are held in a microprocessor. 

These rapid developments in computer software 
have extended the scope of high resolution NMR and 
these advances will hopefully in the near future be 
applied to solid state NMR, ESR and other spectro- 
scopic techniques. 

2. DlGlTlSATlON 

2.1. Signal-to-Noise Ratio 

2.1.1. Signal Aueraging. The necessity of digitisation 
is a direct consequence of the search for a way to 
improve the sensitivity of the NMR technique. This is 
most readily achieved by summation of successive 
scans which reduces the level of the noise relative to 
that from coherent signals. The spectrum sensitivity is 
conventionally defined by the signal-to-noise ratio 
which is measured from a frequency spectrum as the 
amplitude of a given signal divided by the r.m.s. noise 
level. When this ratio is inadequate for spectrum 
interpretation it can be improved by summing scans in 
a superimposable fashion. A coherent signal will 
increase linearly with the number of scans and since 

noise is random, its amplitude increases only with the 
square of the number of scans. The ratio of signal-to- 
noise after n scans to that of a single scan is therefore 

SIN oc Jit (I) 

The signal detected by the receiver of a pulse Fourier 
transform NMR spectrometer is a decaying, continu- 
ously varying voltage containing both the nuclear 
responses and noise. The noise can arise from a variety 
of sources,” ” the probe, receiver amplifier and analog- 
to-digital converter (ADC). These latter two sources 
become important when considering averaging of 
small signals in the presence of large ones. In this case 
with the amplifier output turned down to avoid 
overflow most of the noise can come from the amplifier 
and the ADC, and improving the probe noise figure 
achieves nothing. 

Signal averaging is particularly important in NMR 
because of saturation. Many other spectroscopic tech- 
niques allow one to improve the signal-to-noise ratio 
by scanning slower with appropriate filters, although 
this does not remove low frequency distortions. 

In order to carry out successful signal averaging and 
to manipulate the result in a computer, the received 
voltage is converted into a digital form by sampling the 
signal amplitude at equal time intervals using a stable 
gating frequency and an analog-to-digital converter. 

Successful signal averaging, or more correctly, 
signal summation, can then be realised provided the 
following conditions are met: 

(i) there is a constant digitisation rate. 
(ii) the ADC can recognise both positive and 

negative signals. i.e. a bipolar ADC is used or in 
the case of a unipolar ADC, a d.c. offset is added 
and this can be subtracted later by software. 

(iii) the receiver phase must be constant. 

In the discussion which follows on the experimental 
aspects of digitisation a number of assumptions are 
made and these are stated explicitly here. 

, (4 

(ii) 

(iii) 

Except when otherwise defined, the signal-to- 
noise ratio is taken to mean the ratio of the 
signal height to the peak-to-peak noise height. 
For a Gaussian distribution of noise ampli- 
tudes the peak-to-peak value is strictly infinity 
but operators have their own way of defining 
noise and the peak-to-peak value is usually 
about 2; to 5 times the true r.m.s. level. 
An inversion technique is used at the digitis- 
ation stage to eliminate the effects of any d.c. 
offset in the analog signal. Such techniques of 
course are also designed to remove echo effects 
in single phase detection,“” ghost peaks in 
quadrature detection(i3) and coherent noise 
arising from switching signals in the ADC and 
spectrometer. 
A single scan just fills the analog-to-digital 
converter. Of course, on a commercial spectro- 
meter if one wishes to use 90” pulses, this may 
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not be possible since many receiver amplifiers TABLE 1. Relative signal-to-noise ratios in time, S,, and 
have gain settings in powers of two. frequency, S,, domains for various linewidths (AU) 

2.1.2. Signal-to-Noise in Time and Frequency 
Domains. In general the signal-to-noise ratios in the 
two domains for a single peak are not equal. It is easy 
to form a definition of signal-to-noise ratio in the 
frequency domain where for a single resonance the 
peak height can be measured relative to the peak-to- 
peak noise value. For random white noise the observed 
peak-to-peak noise value is somewhat arbitrary since 
the distribution function extends to infinity; however, 
the r.m.s. deviation of the noise is calculable and the 
measured peak-to-peak level is about five times this 
value. In the time domain, in principle, the signal could 
extend throughout the FID but as a definition let us 
assume that it has decayed to within the noise level well 
before the end of the acquisition period. Then the 
signal-to-noise can be visualised as the height of the 
FID at the start relative to the noise level at the end of 
the acquisition period (t = T). The true sensitivity in 
the time and frequency domains is really a measure of 
the energy content of the signals and in the time 
domain is equal to the square of the signal voltage 
summed over the total acquisition. Similarly the true 
sensitivity in the frequency domain is the correspond- 
ing area but for purposes of this discussion in order to 
discover the extra dynamic range possible in the 
frequency domain we will describe signal-to-noise 
ratios by peak heights. 

T:(s) AO(Hz)‘=) S, S, S&S,@) S@,(quad)“’ 

2.048 0.155 8 (128)‘d’ 16 45.3 
1.024 0.311 8 64 8 22.6 
0.512 0.622 8 32 4 11.3 
0.256 1.243 8 16 2 5.6 
0.128 2.487 8 8 1 2.8 
0.064 4.974 8 4 0.5 1.4 

(‘) Am is the full width at half height. 
@‘This column contains the measured value for single 

phase detection with the signal off-resonance. 
w This column contains the predicted values for quadra- 

ture detection with the signal at the carrier; i.e. the FID would 
have half the amplitude on resonance and the detection 
system also gives a J2 gain. 

td’ This value cannot be measured because for a 7” = 2.048 
seconds and an acquisition time of 4.096 seconds serious 
truncation effects would be observed. (see Fig. 12 for an 
example of the distortions introduced). 

(i.e. n = 1) prior to Fourier transformation, is 

(1 - exp (- T/T:))‘/* (4) 

where F is the spectral bandwidth.“) 
Using eqn (4) for a single phase detector with a FID 

consisting of a single line, off-resonance, the relative 
signal-to-noise ratios can be quite large. For example, 
if F = 1000 Hz and T: = 1 s then Sr/SFrD z 22. 

In an empirical sense the signal-to-noise in the 
frequency domain, S,, and that in the time domain, S,, 
will not be equal and will be related by the resonance 
linewidth, the acquisition parameters and errors intro- 
duced in the Fourier transform. 

However some information can be predicted from 
simple qualitative arguments. The height of the FID at 
t = 0 will be a true measure of the signal area and will 
be independent of the linewidth, [=(ltTz)-‘1. 
However in the frequency domain, using our de- 
finition, S, will be inversely proportional to the 
linewidth and hence S,/S, will also be directly propor- 
tional to the T; of the resonance. Thus S//S, may be 
much greater than unity for a sharp line. 

As a practical demonstration, we have synthesised 
FID’s corresponding to different linewidths and added 
noise to them such that S, = 8: 1 for peak-to-peak 
noise. The parameters used were 8192 data points, 
which if a spectral width of 1000 Hz is assumed gives an 
acquisition time of 4.096 seconds, and the peak was 
placed in the centre of the spectral region. We have 
assumed single phase detection and the measured 
values of S, are given in Table 1 clearly showing a 
proportionality with T:. 

Becker et al.“) have shown that the signal-to-noise 
ratio in a FID is 

The dynamic range observable in the frequency 
domain can be several powers of two higher than in the 
time domain and allowance must be made for this 
when considering computer word lengths for Fourier 
transformation (we shall return to this in Section 4). 

2.2. Hardware Requirements 

S FID = (1 - ew (- TIT:)) (2) 

where V is the r.m.s. noise level and T is the acquisition 
time. If an exponential filter with a time constant of 
(Tt/n) is applied this will reduce the noise at the right 
hand end of the FID relative to the signal (see Section 
3.2) and then the time domain signal-to-noise ratio, S, 
becomes : 

s 

I 

= Mo(2nT?)“2 (1 - ev f--b + l)T/T;C)) 
ti((n + 1) (1 - exp ( -2nT/T2*))‘j2 

(3) 

The signal-to-noise ratio in the frequency domain, S,, 
relative to that in the FID, if a matched filter is applied 

2.2.1. Sample-and-Hold. When directly digitising the 
non-static, analog FID from an NMR receiver, serious 
errors occur because the signal changes markedly 
within the time required for the analog-to-digital 
conversion (see Section 2.2.3 for a calculation which 
gives the maximum allowed rate of change of an input 
signal before errors occur). In order to overcome this 
problem use is made of a sample-and-hold device 
whose function is to “sample” the analog signal and 
then “hold” the value constant for the duration of the 
analog-digital conversion. This is accomplished by 
charging a capacitor during the sampling period. A 
perfect sample-and-hold device would. upon the com- 
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aperture tune 

hold 1 sample 1 

FIG. 1. Definition of the terms used to describe the operation 
of a sample-and-hold device. A full explanation of the sources 

of error is given in the text. 

mand to sample, faithfully follow the input signal and 
on the hold command store the input signal at the 

instant the command was given. In practice, however, 
small delays and errors can occur, which, along with 
the principle of operation, are illustrated in Fig. 1. 

On receiving the “sample” command the capacitor 
starts charging, but takes a finite time to track the 
input signal. This “acquisition time” is typically a few 

tens of nanoseconds which, in general, is only a small 
fraction of the overall sampling time. Usually the 
sampling period is allowed to occupy all the available 
time from the previous analog-digital conversion thus 

guaranteeing insignificant tracking errors. 
The hold command does not take effect instan- 

taneously and the time for the switch to operate 
(aperture time), is typically less than 50 nanoseconds. 
Since this value is constant within very close limits it 
effectively inserts a small time delay across the whole 
FID and can be considered as a negligible increase to 

the pre-acquisition delay normally inserted prior to 

data collection to allow amplifiers etc. to recover after 
the rf pulse. 

After the “hold” command has taken effect the 
output voltage requires typically about one micro- 
second to settle. During this settling time the output 
voltage changes from its initial value, the difference 
being a step error. From this point the capacitor slowly 
discharges at a constant rate (droop rate) and it is 
during this period that the analog-to-digital conver- 
sion is carried out. 

For these errors to be insignificant their combined 
effect must be less than the potential resolution of the 
digitiser for the duration of the conversion. Since good 
quality sample-and-hold devices have droop specifi- 
cations of typically a few microvolts per microsecond 
and analog-to-digital conversions require only a few 
microseconds, this condition is easily satisfied, and 
errors from this source are insignificant. 

The overall accuracy of a sample-and-hold device is 

typically about O.Ol’;/ or 1 :213 (but when signal 
averaging in the high dynamic range case and using an 
ADC of I6 bits, then a higher precision is also 
necessary on the sample-and-hold device (see section 

2.5.5). 
2.2.2. Analog-to-Digitul Conwrsion. The output of 

the sample-and-hold circuit is fed to the input of the 
analog-to-digital converter (ADC). In modern spectro- 
meters because of the high sampling rates necessary, 
this will be of the successive approximation type. Its 
mode of operation is shown schematically in Fig. 2. It 
works by comparing the input voltage with a voltage 
generated by the computer to be half full-scale and if 
the input is greater than this then the most significant 
bit in the ADC word is set. 

The computer then generates a voltage correspond- 

ing to three quarters or one quarter full-scale accord- 
ing to whether the most significant bit was set or not 
and this is compared with the input voltage and the 
next most significant bit is set or not according to 
whether the input is greater or less than the generated 
value. The process is repeated for each bit of the ADC 
word. The detailed operation for a 10 volt full-scale, 5 
bit ADC is as follows : 

The most significant bit (bit 4) is turned on and the 

voltage corresponding to this level (5.000 volts) is 
obtained from a digital-to-analog converter (DAC). 
This is compared with the input signal using a 
comparator circuit, and if the input voltage is less than 
5.000 volts the bit is switched oB; if the input voltage is 
greater than 5.000 volts, bit 4 is left on. Next bit 3 is 
turned on and its corresponding voltage (2.500 volts), 

FIG. 2. Diagrammatic representation of the mode of oper- 
ation of a successive approximation ADC. 
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added to the previous 5.000 volts if bit 4 was left on, is 
compared with the input and again bit 3 is turned off or 
left on according to whether the input is less than or 
greater than the generated voltage. Next bit 2 is turned 
on and its voltage (1.250 volts) is taken from the DAC, 
added to that generated from any previous bits left on 
and compared with the input voltage. This process is 
repeated down to bit zero when the generated voltage 
will correspond to half the scale for one bit (in this case 
0.3125 volts), and thus it is possible to distinguish an 
input level greater or less than the voltage correspond- 
ing to half a bit, and for this reason the possible 
resolution of an N bit successive approximation ADC 
is about 1: 2N+ ‘. 

2.2.3. ADC resolution and error sources. This review 
is not the place for a detailed discussion of the 
hardware limitations of ADCs, but a few of the usual 
sources of error may be listed. 

(9 

(ii) 

(iii) 

Quantisation error: the minimum deviation of 
the digital result from the analog input and is 
only achieved in the absence of effects arising 
from non-linearity etc. At best this can be f f 
LSB (the least significant bit). 
Linearity : a measure of the extent to which the 
output code of bits versus the input voltage 
differs from a straight line (or actually a stair- 
case). If the linearity is worse than ki LSB, 
adjacent code levels may not change. 
Non-static input : an additional error can arise 
if the input changes during a conversion. A 
successive approximation ADC chooses a 
va!ue for the most significant bit at the begin- 
ning of the conversion and hence can be in error 
by the total amount that the input has changed 
between then and the final least significant bit 
step. If the input is to be converted to an 
accuracy of k) LSB then it must not change by 
more than the voltage corresponding to this 
amount during the total conversion and this 
problem is overcome by using the sample-and- 
hold device. It is interesting to carry out a 
calculation to determine the maximum 
frequency which can be digitised without a 
sample-and-hold. Consider a 10 bit, 10 volt full 
scale converter requiring 10 psec per conver- 
sion. This will give an error greater than -&$ 
LSB if the input changes by more than k$ 
(10/2”) z + 5 mV in the 10 psec required for 
the conversion. That is, conversely, a rate of 
change greater than 5 mV/lO psec will give an 
error greater than +f LSB. The maximum rate 
of change of a sine wave of amplitude V,,. and 
frequency v occurs as it passes through zero. 

dV (-> dl max 
= 2nvV,,, (5) 

(6) 
milx 

Substituting for a 10 volt sine wave gives a 
maximum frequency of 5 8 Hz. 

(iv) Resolution : as previously stated, in the absence 
of other errors or noise, the analog voltage is 
defined to one part in 2’+ ’ for an N-bit ADC. 
However, in a real spectroscopic case, signals 
smaller than this fraction can be digitised 
correctly either because the random nature of 
the noise added to a weak signal can break over 
the level required to set the least significant bit 
in the ADC (let us define this as one count) or in 
the presence of a strong signal, the small signal 
may modify the bits which are set in the ADC 
even though the absolute value of the small 
signal corresponds to much less than half the 
least significant bit. (In this case if the noise is 
less than one count then the digitised result for 
the small signal may be in error, see Section 
2.6.1 and Figs. 7 and 8). 

As a general rule as the ADC resolution increases 
the maximum sampling rate falls. Thus a 12 bit ADC 
may be capable of operating at 330 kHz but a 16 bit 
device may be limited to 50 kHz. But, when it is 
necessary to detect very small signals in the presence of 
large sample or solvent peaks, i.e. using high resolution 
ADCs, these may be the very situations in which wide 
sweep widths are required (e.g. for 19F NMR), limiting 
the ADC resolution by virtue of the high sampling 
rates required. This problem is not alleviated by the use 
of quadrature detection, where two detectors 90” out of 
phase are used and the spectral width for each is only 
half that of single phase detection. This arises because 
although two detectors are used, it is conventional for 
the output signals from both to be digitised through a 
single ADC multiplexed to both channels so that as far 
as the ADC is concerned the same sampling rate is 
required for single and quadrature phase detection. 

One possible method of overcoming this problem, 
so far not adopted by NMR manufacturers, but used in 
high dynamic range mass spectrometry, is to use two 
12 bit ADCs overlapped by 8 bits. Here the NMR 
signal would have to be divided into two parts differing 
in amplitude by a factor of 16, each part being fed to a 
separate ADC. However, it would be necessary to 
ensure that both signals had identical phases im- 
mediately prior to digitisation. The two ADCs can 
now be termed as having high and low sensitivity. The 
high sensitivity device could be used for all conven- 
tional applications but in situations of high sensitivity 
and high dynamic range the top four bits from the low 
sensitivity ADC could be used to produce a 16 bit 
digitised result. The reason for overlapping the ADCs 
is to prevent the half least-significant-bit error appear- 
ing in the computer word from the low sensitivity 
device. The advantage is clearly one of conversion 
speed and hence an expansion in the maximum usable 
frequency width. In addition it may be simpler to 
interface two ADCs in this way rather than add the 
complication of switching two direrent ADCs with 
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i, .; 

u 

FIG. 3. The effect of timing errors on the digitisation of a 
single frequency. The diagram shows the result of Fourier 
transformation after sampling a 2500 Hz sine wave at 100 ps 
per point with a random timing error of f the number of 
microseconds shown. (Reproduced from Computers and 
Chem. 1, 55 (1976) with permission of the copyright holder). 

entirely different characteristics for the different 
applications. 

2.3. Sampling Rates and 7lming 

The speed at which the voltage must be sampled is 
defined by the Nyquist theorem and to prevent 
“aliasing” or “foldover” this must be at least twice the 
highest frequency of interest. Most textbooks on 
FTNMR carry a diagram which illustrates this 
princip1e.(‘4’ 

The constancy of the sampling rate is also most 
important because if this varies it will distort the 
frequency information in the final spectrum giving 
noise and/or harmonics. Figure 3 shows the result of 
sampling a 2500 Hz sine wave every 100 psec with a 
random timing error of kO.1, f 3.3, f6.7 and + 13.3 
psec. The Fourier transform of the digitised result 
clearly shows a great deal of spurious information as 
the timing jitter is increased!“) 

2.4. Quantisation Errors 

Any digitisation of an analog signal will only be an 
approximation to the truth and artefacts will be 
introduced simply by Fourier transformation of a 
digitised decaying pure sine wave, and we give here an 
analysis of the types of distortion which can occur and 
how serious they are. Two sources of such frequency 

artcfacts are possible if WC ignore, for the present, what 

happens if the signal of interest is less than one count in 
the digitiser (i.e. the voltage necessary to set the least 
signifcant bit). 

If there is an exact number ofdata points per cycle of 
the sine wave any misrepresentation of the signal 
voltage will occur at integral multiples of the signal 
frequency and therefore give rise to signals at higher 
harmonics. 

If, as in general, there is a non-integer number of 
data points per cycle, errors will have a periodic nature 
and will reappear at periods of N( S - Jo), where / is 
the FID frequency and Jo is the nearest frequency 
which has an integral number of data points per cycle. 
The latter effect is illustrated in Fig. 4, which shows the 
distortion introduced by placing a large signal at 
various offsets from the centre of the frequency spec- 
trum. Clearly the solution, at least for a single scan, is 
to place the carrier frequency such that the large peak 
appears exactly at the centre of the spectrum. Then for 
single phase detection there will be exactly four data 
points per cycle, removing the second cause of distor- 
tion, since by definition (J - fopo) is zero. Also the first 
harmonics will appear at the edges of the spectrum 
removing the first kind of distortion. 

These two sources of quantisation errors will have 
an effect at any given ADC resolution, but it is 
important to realise that both will get progressively 
worse as the ADC resolution is decreased. 

Figure 5a shows that even for a single peak in the 
centre of the spectrum, quantisation errors increase as 
the ADC resolution is lowered, the increased un- 
certainty in the digitisation of the input voltage being 
manifested as an increase in the noise level being worst 
close to the peak. If the signal is placed away from the 
centre of the spectrum then the harmonics and other 
distortions as in Fig. 4 reappear and these also get 
progressively worse as the ADC resolution is lowered 
(Fig. Sb). 

The effects of having a non-integer number of data 
points per cycle will give spurious lines in cases where 
cf - _&) is greater than a few Hertz but where cf - fo) 
is small an increased noise level is observed. 

An important question arises as to why, as is 
observed, the harmonics and other peaks, and of 
course the quantisation induced “noise”, all are re- 
duced by multi-scan averaging. If all the scans were 
truly identical with regard to signal then surely the 
quantisation errors would be the same? The many 
scans added together in a normal experiment are not 
all the same because small changes in d.c. offset, 
changes in pulse width, or any very low frequency 
component ensures that the signal digitisation is 
different for each scan. For example using a 70” pulse 
and a 12 bit digitisation a 0.1” change in the pulse angle 
causes, at a minimum, the least significant bit to be 
altered. Also another source of variability in a real 
spectrum will arise through small changes in spinning 
speed during a long acquisition. Figure 8 shows such a 
decrease in quantisation errors as a result of multiple 
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FIG. 4. The quantisation distortions introduced by placing a signal at various offsets from the centre of the 
spectral window. The offsets are, from the top, - 25 Hz, - 5 Hz, - 1 Hz, 0 Hz, + 1 Hz, + 5 HZ and + 25 Hz. 

Spectral width 1250 Hz, 8k data points with a plotted width of 275 Hz. 

scan averaging. In addition, use of phase alternating 
pulse sequences (“) brings additional variability to a 
multi-scan experiment. Simply adding noise to an 
already digitised signal cannot affect the quantisation 
errors, but merely degrades the signal-to-noise ratio. 

Clearly the more stable the spectrometer system, the 
less will harmonic and other quantisation errors be 
reduced by multiple scan averaging. The problem is 
greater at highest fields where, for superconducting 
magnets, the stability is high and more importantly the 
sensitivities are up to twenty times higher. Because of 
this decrease in noise, higher resolution ADCs are a 
pre-requisite. 

2.5. Signal Overflow 

2.51. Introduction. Since it is signal summation 
which is normally carried out, eventually at least one 
computer word in the data array will contain all ones 
and thus any further signal input would cause over- 
flow. This cannot be allowed to happen in Fourier 
transform NM R data systems since the contents of any 
one location in the time domain spectrum will affect 
the appearance of all channels to some extent after 
Fourier transformation. The effect of allowing over- 
flow to occur in the FID from a single line is shown in 

Figure 6. This shows the result after Fourier trans- 
formation of allowing the synthesised FID from an 
exponentially weighted sine wave to overflow at the 
beginning for the number of addresses shown. 

2.5.2. Possible number of scans. For a noise-free 
spectrum the number of scans which can be added 
before overflow occurs depends on the resolution of 
the ADC and the computer word length. For a 
computer with a word length w and an ADC with a 
resolution of N bits then this maximum number of 
scans is 2”-N and values are given in Table 2 for 
various w and N values. 

Cooper(‘5’ has calculated the possible number of 
scans which result as a consequence of allowing the 
spectrum to have a finite signal-to-noise ratio. For an 
initial signal-to-noise ratio of s counts of signal to one 
count of noise, the total input is s + I counts and 
therefore the proportion ofsignal to fill an N-bit ADC 
is 2Ns/(s + I). The total number of scans T to fill 
memory will give a signal T2Ns/(s + 1) and a noise 
value of T’122N/(~ + 1). If the maximum number in a 
computer word of length w is 2” then when total signal 
plus noise is equal to 2” overflow will occur. 

2” = 2” (7) 
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FIG. 5. The effect on the quantisation errors of reducing the 
ADC resolution for a signal placed (a) at the centre of the 

spectrum and (b) at an offset of - 50 Hz. 

,/T=- 
1 + [l + 4s(s + 1)2w-9”* 

2s 
(8) 

This result has been calculated by Cooper”” for 
various initial signal-to-noise ratios and w - N values 
and these are given in Table 3. 

In this table the initial signal-to-noise ratios will also 
depend on the ADC resolution because of quantis- 
ation errors and the final signal-to-noise ratios are 
those pertaining to the time domain. 

For a very low initial signal-to-noise ratio such as in 

13C NMR it has not been considered necessary to use 
such a high resolution ADC as 12 bits and just a few 
bits have been suggested as sufficient. However this is 
an over-simplification because even in the presence of 
noise any coherent signal will still be subject to 
quantisation errors (Section 2.4). Also the uncertainty 
from the half least significant bit of the ADC will be 
present and will be a significant proportion of the total. 

As is clear from Fig. 6 it is necessary to be able to 
detect overflow just before it occurs otherwise in- 
creased signal averaging just leads to a greater number 
of artefacts. Commercial NMR spectrometers are 
programmed to test for overflow and to halt ac- 
quisition if overflow is imminent. 

If a satisfactory signal-to-noise ratio has been 
obtained prior to overflow then there is not any 
problem and a Fourier transformation can be per- 
formed, but it is interesting to note some of the 
computer parameters which may be required in a real 
case. Cooper (I ‘) has performed this calculation for the 
situation which may occur in r3C NMR and here a 
total scan time of three days is about the maximum 
which anyone would devote to one spectrum, and if a 
transient is recorded every second then about 2’a scans 
would be added. Thus 2ls scans gives a 29 improve- 
ment in signal-to-noise and for a final value of 4: 1 in 
the time domain the initial signal-to-noise is about 2-’ 
or 0.0078. Substituting into eqn (8) gives w - N z 11. 
This implies a maximum of a 5 bit ADC for a 16 bit 
computer word but this maximum may be too low for 
the reasons given above. However if, with the com- 
puter word full, the final signal-to-noise ratio in a 
spectrum is not good enough a number of options are 
possible and these are described in the next 
paragraphs. 

2.5.3. Scaling of memory and ADC. When overflow 
is about to occur, one method of enabling the ac- 
quisition to continue involves dividing the memory 
contents, the incoming signal and the ADC resolution 
by two. This process can be repeated each time 

FIG. 6. The effect after Fourier transformation of allowing overflow by the number of channels shown at the 
beginning of the FID. The peak was generated by exponentially weighting a digitised sine wave and plot 

scaling was adjusted to give identical areas in all cases. 



36 J. C. LINDON and A. G. FERKIGE 

TABLE 2. Maximum number of scans for various computer word lengths 
and ADC resolutions assuming a noise-free signal 

ADC Computer 
resolution word length 

(bits) (bits) 16 20 24 32 

6 1024 16384 262144 67108864 
8 256 4096 65536 16777216 

10 64 1024 16384 4194304 
12 16 256 4096 1048576 
14 4 64 1024 262144 
16 1 16 256 65536 

overflow is imminent until an ADC resolution ofabout 
6 bits is reached. The method works for cases of low 
dynamic range but its main disadvantage is that in 
general small signals in the presence of large ones will 
eventually be inadequately digitised because the 
modulation caused by a small signal on a large FID 
will not be detected above the quantisation error. Also 
it is true that quantisation errors will increase as the 
acquisition proceeds. 

Let us consider an example of an FID with an initial 
signal-to-noise ratio of 0.1 digitised using a 12 bit ADC 
into a 16 bit computer word. From Table 3 it is seen 
that 84 scans may be summed before overflow occurs 
at which point the signal-to-noise ratio in the time 

domain will be J84 x 0.1 = 0.91, clearly not ad- 
equate. The memory, input, and ADC are all divided 
by two ; now only 15 bits of the computer word will be 
full and the number of scans required to fill the last bit 
is half that required to fill an empty word, and since 
now w - N = 5, a further 104 scans can be ac- 
cumulated giving a signal-to-noise ratio of 0.1 

x ,,/%% = 1.37. This process can be repeated until the 
required signal-to-noise is obtained. In the example 
given here, scaling to a 10 bit ADC will occur after 188 
scans giving 1.37 as a signal-to-noise figure, scaling to 9 
bits after 430 scans giving 2.07, scaling to 8 bits after 
969 scans giving a signal-to-noise of 3.11, to 7 bits after 
2135 scans giving a figure of 4.62 and to a 6 bit ADC 

after 4600 scans giving a final signal-to-noise ratio of 
6.78. 

For a case with an initial signal-to-noise ratio of 0.1 
the noise will ensure that even for very low ADC 
resolution the signal will appear on top of the noise 
even though the full square root gain will not be 
obtained because the noise from the half least signific- 
ant bit error is an appreciable part of the total. 
However, if the actual division of the input is ac- 
complished by right shifting data digitised by a high 
resolution ADC, retaining the amplifier settings, then 
this method removes any uncertainty caused by the 
half least significant bit error of the ADC which would 
otherwise increase as the ADC resolution is decreased. 

2.5.4. Normalised averaging. Cooper” 5’ has de- 
scribed the method of normalised averaging for pre- 
venting memory overflow. If the average signal in the 
memory after p scans is A, and the signal from each 
scan is si then 

A, =; i si 
P i=l 

Multiplying eqn (9) by p and eqn (10) by (p - 1) and 
subtracting gives 

s,=pA,-(p- l)A,_,. (11) 

TABLE 3. Maximum number of scans and final signal-to-noise ratios for various ADC resolution (N), computer word lengths 
(w) and initial signal-to-noise ratios (S/N). 

S/N = 0.01 S/N = 0.1 S/N = 1.0 S/N = 10.0 

W-N 

4 
5 
6 
7 
x 
9 

IO 
I1 
12 
13 
I4 
I5 
I6 

Scans 

200 
661 

1996 
5507 

14016 
3342X 
75878 

I66093 
354182 
74 I293 

I 53 1049 
3132577 
6366X I I 

Final 
SIN 

0.14 
0.26 
0.45 
0.74 
1.18 
I.83 
2.75 
4.0x 
5.95 
X.6 I 

12.37 
17.70 
25.23 

Scans 

84 
207 
484 

1079 
2332 
4929 

10251 
21076 
42982 
87159 

17602X 
354494 
712455 

Final 
SIN 

0.92 
1.44 
2.20 
3.28 
4.83 
7.02 

10.12 
14.52 
20.73 
29.52 
41.96 
59.54 
84.41 

Scans 

26 
56 

117 
240 
489 
992 

2003 
4032 
x101 

16256 
32587 
65280 

130710 

Final 
SIN 

5.2 
7.5 

10.8 
15.5 
22. I 
31.5 
44.8 
63.5 
90.0 

127.5 
I X0.5 
255.5 
361.5 

Scans 

17 
34 
69 

139 
279 
560 

1123 
224X 
449x 
9001 

1800X 
36025 
72062 

Final 
SIN 

41.5 
58.8 
83.4 

11X.2 
167.3 
236.8 
335.1 
474.1 
670.7 
94X.8 

1342.0 
1898.0 
2684.5 
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By subtracting A, from both sides, and dividing by p 
gives 

A,, = 
s -A,_, 
Pam- + A,_ ,. 

P 
(12) 

Thus, for normalised averaging, the current average is 
subtracted from each scan and this resultant divided 
by the number of completed scans is added to the 
previous average. Usually the division is achieved by 
right shifting the computer word and the number of 
bits shifted corresponds to a division by that power of 
two and for convenience eqn (12) becomes 

A, = s 
sr-A,-, 

2M 
+ A,- ,, (13) 

where M is the first power of two greater or equal top. 
Using this method overflow cannot occur, but the 

number of scans which can be added is 2N (where N is 
the number of bits in the ADC) since as soon as p 
> 2N-’ , IM becomes 2N making all differences s,, 
- A,_, equal to zero. Also as M increases, the 
detectable dynamic range is reduced so this method 
cannot be used for the high dynamic range situation. 

2.5.5. Double length averaging. The method which 
enables the continuation of averaging on most com- 
mercial spectrometers is that described in Section 
2.5.3, namely scaling of memory and ADC. However 
even this method will not always allow enough scans to 
be accumulated to give an adequate signal-to-noise 
ratio, and to illustrate this, let us choose a specific 
example. Assume that we have a spectrum with an 
initial signal-to-noise ratio of 0.1 : 1 in the time domain 
and that we can use a minimum of a 6 bit ADC, then 
from Table 3 the maximum number of scans is 10251 
with a final signal-to-noise of 10.1 : 1. This timedomain 
signal-to-noise may not be adequate for a particular 
application which could involve deconvolution with a 
resolution enhancement function and so it then be- 
comes necessary to continue averaging. This can be 
done by allowing two computer words for each 
location and to continue averaging in a double length 
mode. 

One practical method is to dump the FID on 
backing store, say disc, at intervals defined by Table 2 
before overflow occurs and to allow the FID to occupy 
more than one word per location. It is also possible to 
accumulate double length in memory or to acquire in a 
floating point format although this latter method has 
the disadvantages of difficult programming and the 
computations necessary may not be possible in real 
time. 

To return to our example let us now assume we need 
to perform 100,000 scans to give a final signal-to-noise 
of 31.6: 1. On substitution of the number of scans and 
the initial signal-to-noise ratio into eqn (8), w - N is 
found to be 13.19. This implies a 20 bit word for a 6 bit 
ADC or a 24 bit word for a 10 bit ADC. Ifthe computer 
has a 16 bit wordlength then double length averaging 
is necessary (i.e. using up to 32 bits). 

It is not necessary to perform a 32 bit Fourier 

transformation because at each location the signal 
value may be in error by +7-g bits as a result of the 
noise. If, in our example above, the contents of the 
computer words were shifted to the right to occupy 
only 16 bits then there would remain +5-6 bits of 
noise at each location and the noise after Fourier 
transformation would still be very much greater than 
quantisation noise as a result of defining the signals 
less precisely by using fewer bits. 

2.6. Signal Averaging in the Presence of’Large Siynals 

2.6.1. Number of scans und ADC resolution. So far 
we have only considered the digitisation requirements 
when averaging signals in the time domain which have 
a low signal-to-noise ratio. If, in that category there is 
also a large dynamic range, we have seen that special 
precautions, such as possibly using a double precision 
acquisition sequence, may be necessary. 

Let us now turn to the situation commonly found in 
FTNMR where there is a high signal-to-noise ratio in 
the time domain and no dynamic range problem. Here 
further averaging is only necessary to improve the 
noise level, possibly to enable efficient deconvolution 
routines to be used or for quantitative analytical 
determinations. As long as a high resolution ADC is 
used to keep quantisation errors to a minimum, 
normal signal averaging techniques as described in 
Section 2.5 are adequate. 

The major difficulty in FTNMR arises when trying 
to recover small signals of interest from noise in a high 
dynamic range situation where the major signal, 
usually from a solvent resonance, has a very high time 
domain signal-to-noise ratio. In this case, special 
consideration must be paid to the ADC resolution, the 
computer word length and, as described in Section 4.3, 
the type of Fourier transformation routine used. 

An N-bit successive approximation ADC will not 
detect changes in the input voltage much less than 1/2N 
and this occurs because of the way in which it operates 
since any change in voltage less than 1/2N+’ will not 
cause the least significant bit to be altered, and voltages 
up to 3/2N+’ will only affect the least significant bit. 
The effect is described as due to changes in voltage 
because in the FID any small signal will appear as a 
modulation on the large signal, or noise, and this 
eventually enables the detection of voltage changes 
due to the small signal less than 2-N. Cooper”” has 
analysed the final time domain signal-to-noise ratios 
possible for various ADC resolutions (N) and com- 
puter word-lengths (w). Since a large signal is present 
in the high dynamic range case only 2w-N scans are 
possible before overflow and hence the final signal-to- 
noise ratio will be that initially, multiplied by the 
square root of the number of scans up to 2”‘-N, 
provided the dynamic range of interest is not greater 
than twice the digitiser resolution. Defining the signal 
intensities for the large and small signals as SL and Ss, 
although S, will appear as a modulation on S,, then 
the final signal-to-noise ratio for the small signal (S,) is 
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TABLE 4. The final signal-to-noise ratios and the maximum number of scans in the high 
dynamic range case for various values of the small signal intensity. (S, = 1000 in all 

cases) 

NW 

S,@’ 
Max no. 

scans Ss = 10 ss = 1 Ss=O.l Ss = 0.01 

16 6 1024 320 - - 
9 128 113 11.3 - 

12 16 40 4 - - 
16 1 10 1 0.1 0.01 

20 6 16384 1280 - 
9 2048 453 45.3 - - 

12 256 160 16 - 
16 16 40 4 0.4 0.04 

24 6 262144 5120 
9 32768 1810 

12 4096 640 
16 256 160 

- - 
181 - - 
64 - - 
16 1.6 0.16 

32 6 67108864 81920 
9 8388608 28963 

12 1048576 10240 
16 65536 2560 

- - - 
2896 - - 
1024 - - 
256 25.6 2.56 

w w is the computer word-length in bits. 
lb) N is the ADC resolution in bits. 
Cc) Values omitted cannot be calculated from eqn (15) because Ss < l/2n+‘. 

S, = 2”-NSs, for S JS, < 2N+ ‘, 

or defining A as 

-SL. A=- 
Ss 

+ 2N+’ (14) 

S f = 2’“-N”2Ss( 1 A 1 f A)/2A. (15) 

The final values for S, for various values of w and N, 
assuming SL = 1000 are given in Table 4. 

The values of S, given in this table are over-estimates 
because contributions from quantisation errors have 

been ignored. 
It has often been stated that it is impossible to detect 

signals smaller than those corresponding to half the 
least-significant-bit in the digitiser. However this con- 
clusion assumes an infinite signal-to-noise ratio in the 
time domain and it is possible to calculate what occurs 

for the case of a finite signal-to-noise ratio and to show 
that noise can increase small signals to detectable 
levels provided enough scans can be acquired. 
Ernst(‘6’ pointed this out first and performed the 
necessary calculations which showed that one count of 
noise in the ADC will allow the digitisation of signals 
much smaller. Marchal et a[.‘* ‘) have extended these 
calculations for the case of a 9-bit ADC with the 
large/small signal intensity ratio varying up to 2”. 
Figure 7 shows the results ofsimilar calculations for a 6 
bit ADC, used simply for speed of computation. 

This diagram shows how, for example for the first 
location, the small signal intensity will appear after 
many accumulations for different r.m.s. values of the 
noise in counts. Two conclusions which can be gained 
from this figure are that as long as the r.m.s. amplitude 
of the noise is less than the voltage corresponding to 

about one count in the digitiser, the value of the small 
signal voltage at any one location will be distorted 
(both over- and under-estimates are possible). 
Secondly, when the r.m.s. value of the noise is greater 

25.0 s 

0 .2 .4 -6 

a o ‘I ‘* ‘(I 
FIG. 7. The effect of noise on the digitisation of small signals 
(of amplitude S) in the presence of a large signal (of 
amplitudes 25.0, 25.2, 25.5 and 25.8) using a 6 bit ADC. D, 
represents the digitised value of the small signal voltage after 
many scans taking into account the random nature of the 

noise with a standard deviation of crN counts. 
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than this level, the small signal is measured correctly. It 
should be noted that the small signal will eventually be 
defined adequately regardless of its initial size pro- 
vided that the r.m.s. level of the noise is above about 
one count in the ADC. Because of the nature of a real 
exponential decay the small signal may well cor- 
respond to one count at the first location of the FID 
but it becomes progressively less during the ac- 
quisition. The amplitude of the large signal is only 
important in that it defines the voltage corresponding 
to one count. 

From Figure 7 it can be seen that, at any one 
location, the value of the small signal voltage will be 
distorted if the r.m.s. noise level is zero. This does not 
necessarily mean that the small signal intensity will be 
distorted after Fourier transformation. This is because 
it is unlikely that the decays from the large and small 
signals will have identical time constants and therefore 
throughout the FID their proportions will change and 
both over and under-estimates of the small signal 
voltage may average out. Also, for the completely noise 
free situation, a small signal of less than one count will 
be detected by multiple scan averaging because no two 
scans are identical and this effectively adds in a 
variability which allows the small signal to be detected 
(Section 2.4). 

An interesting question is whether signals smaller 
than half of one count in the ADC can be detected after 
Fourier transformation on a single scan in a noise-free 
situation. Intuitively it would appear that it is only 
necessary for the digitised result to be altered in a few 

I 

locations by the small signal which may be just 
sufiicient to cause a diKerent bit to bc set in those 
locations and hence sufficient frequency and intensity 
information would reside in the FID. Figure 8 de- 
monstrates that this is so. Trace (a) shows the ‘H 
frequency spectrum of a mixture of acetone and 
benzene where the linewidths and hence the time 
constants in the FID are similar and with a ratio of the 
areas of 36&l. This trace results from Fourier trans- 
forming a single scan such that a 12 bit ADC was just 
filled. The noise in the time domain was less than one 
count on average arising only from the i-f LSB 
uncertainty in the ADC. Therefore, in the frequency 
domain the noise is dominated by quantisation errors 
and Fourier transform noise. Trace (b) is the result 
after Fourier transformation of the same FID after 
shunting the contents of the computer words to the 
right such that the four least significant bits are lost; 
now the+LSB error has efiectivelydisappeared. At this 
point the small signal corresponds to 0.7 count in the 
ADC at the beginning of the FID and progressively 
less as the FID proceeds. The benzene signal is still 
present at its correct relative intensity. Traces (c) and 
(d) show the result of dividing the same FID by a 
further factor of 4 and 16 respectively. In the latter case 
the small signal only contributes < 0.04 of a count in 
the ADC and this is only at the first location of the 
FID. In principle the noise will still be present but will 
only amount to c 0.004 of a count and can be ignored. 
Aft& Fourier transformation the peak is still ob- 
servable on a single scan with the correct intensity 

I 

a, . -&+-h-h_. 12bitr 

I 
I 

FIG. 8. Demonstration of a large signal causing the digitisation of a small signal in the absence of noise with 
the small signal intensity < 1 count in the ADC. (a) shows the ‘H NMR speztrum of a mixture of benzene and 
acetone; the linewidths are similar and the area ratio is 1:368. This sp&trum is the result of a single scan 
using a 12 bit ADC. The only noise in the time domain arises from the 4 LSB of the ADC. Trace Ib) is the 
res& of taking the same FIfi and dividing by 16 so that the f LSB noise effectively disappears. I&w the 
small signal at t = 0 represents 0.7 counts. Traces (c) and (d) give the result of further divisions by 4 and 16 
respectively. In the latter case the small signal is ~0.04 count at the beginning of the FID. Trace (e) is the 
result of summing 16 scans using a 12 bit ADC and (f) is the result from transforming the sum of 16 separate 

noise free FIDs obtained by dividing 12 bit digitised scans to 4 bits. 
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within experimental error. The progressive increase in 
quantisation errors can be observed in the series(a)-(d). 

Thus it is possible to observe two peaks which have 
a dynamic range of 368 : 1 at the start of the FID using 
a “noise free” signal and ADC with a resolution of only 
4 bits. The presence of the small signal can be observed 
more clearly using multiple scan averaging. Trace (e) 
shows the result ofadding 16 scans acquired using a 12 
bit ADC and trace(f) the result of summing 16 separate 
FIDs acquired using a 12 bit ADC and scaled to 4 bits 
before summation. A gain in the signal-to-noise ratio is 
observed in both cases although the magnitude of the 
gain depends on the relative magnitudes of the noise 
introduced by quantisation errors and by the Fourier 
transform. The multiple scan results also show the 
reduction in the quantisation harmonics which are 
achieved because no two scans are identical. 

All calculations so far have relied on determining the 
signal-to-noise ratio in the time domain. As shown in 
Section 2.1.2 the signal-to-noise ratio in the frequency 
domain can be several powers of two higher even 
allowing for rounding or scaling errors in the Fourier 
transform. For example a spectrometer, operating at a 
magnetic field of about 2T with quadrature detection, 
will produce a frequency domain signal-to-noise ratio 
for 100% H,O of about 100,000 (or 2”) for a single 90” 
pulse. From eqn (4) with a spectral width of 1000 Hz 
and a T2* of 1 second this gives a signal-to-noise ratio in 
the time domain of about 2li. If the large solvent peak 
is off-resonance the FID amplitude and signal-to-noise 
ratio is doubled. This means that a 12 bit digitiser may 
only be barely adequate to give one count of noise. At 
the highest available magnetic fields, where the signal- 
to-noise ratio is about 4 bits greater, then the same 
questions of adequacy apply to a 16 bit ADC. 
However, in the high dynamic range case when using 
very high magnetic fields (~350 MHz) the large 
resonance may be artificially broadened because of the 
phenomenon known as radiation damping.“*’ Here 
the large induced signal voltage causes the generation 
of a back emf which tends to destroy the original signal 
leading effectively to a shorter T:. This has a further 
implication when considering the relative signal-to- 
noise ratios of large and small signals in that it 
effectively lowers the dynamic range in the frequency 
domain. 

2.6.2. Spectroscopic methods of improving dynamic 
range. It is possible to reduce the demands on com- 
puter word length and ADC resolution by a variety of 
spectroscopic methods. However, almost all either 
take considerably longer for a required signal-to-noise 
ratio or alternatively only produce partial spectra. 

(i) Solvent peak irradiation giving saturation of 
the largest resonance.“” 

(ii) Nulling of solvent resonance with a long T,, 
such as water, by utilising the inversion- 

recovery sequence and collecting data when 

the solvent is just nulled.(20’ 
(iii) Synthcsiscd excitation whereby the power 

spectrum of the transmitted pulse is designed 
not to include the solvent resonance 
frequency.‘* ‘) 

(iv) The Redfield soft pulse method, which uses 
specially designed weak pulses to excite only 
the resonances ofinterest and to be nulled over 
as great a frequency range as possible.(4’ 

(v) Rapid-scan correlation NMR in which the 
large peaks are simply not included in the 
scan.“.*’ 

(vi) Use of a notched filter’22’ to suppress the 
detection of a particular frequency. 

(vii) Later, we discuss the noise introduced by 
Fourier transformation of a large signal and 
show that the rounding error noise is propor- 
tional to the number of spectral channels 
which are full. Therefore placing the large 
signal near the carrier will reduce the number 
of cycles which the cosine voltage will pass 
through before it decays significantly. 
Therefore this may reduce slightly the amount 
of noise introduced by the Fourier 
transformation.(’ 5, 

(viii) Finally, a recent method of experimentally 
overcoming the dynamic range problem is to 
use the selective excitation technique of a train 
of very narrow pulses.‘23’ 

2.6.3. Block averaging. This is the most widely used 
technique on commercial instruments to enable the 
continuation of signal averaging once overflow is 
imminent. The FID is averaged for a certain number of 
scans such that no overflow can occur. The spectrum is 
then Fourier transformed, phase corrected, stored in a 
separate area of memory or on backing store and the 
acquisition repeated after zeroing the data area. After a 
second block of data is Fourier transformed this is 
added to the first result and the process is repeated 
until a sufficient signal-to-noise ratio is obtained. The 
large solvent peak will have overflowed many times in 
the frequency spectrum but hopefully the small peaks 
of interest will remain. 

Several difficulties and pitfalls are associated with 
the block averaging technique, the one of most prac- 
tical importance is ensuring that the small signals of 
interest do not overflow and this is difficult to prevent 
without constant attention to the spectrum. This 
disadvantagedisappears if the user has access to a disc- 
based FTNMR computer package because in this case 
each block of transformed data can be stored sep- 
arately and only those in which there has been no 
homogeneity degradation or drift need be summed. 

Cooper”‘) has also pointed out that a Fourier 
transform program may scale two blocks ofdata quite 
differently even if they look similar to the eye and this 
could introduce errors if for example a block given a 
greater weighting were one in which the resolution had 
degraded. 

In addition, the errors introduced by the Fourier 
transform process as noise may be greater than the 
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a 

b 

FIG. 9. A demonstration of the inadequacy of allowing input scaling to occur as a means of increasing the 
number of scans available when in the high dynamic range case. The sample consisted of a dilute solution of 
ethylbenzene in benzene with a small amount of C,D, for field-frequency lock. Only the aliphatic region is 
shown. (a) The result of Fourier transformation of 64 scans using a IO bit ADC into a 16 bit computer word. 
(b) The result from 64 scans at IO bits plus 192 scans at 8 bits resolution. (c)The result of 64 scans at 10 bits 
plus 192 scans at 8 bits plus 768 scans at 6 bits resolution. (d) The result of 1024 scans at 10 bit resolution 

summed on backing store, and normalised to 16 bits prior to Fourier transformation. 

small signals of interest. Each accumulated FID will be 
slightly different because of the random nature of the 
noise and it might be that this noise is the major 
component of the noise after the Fourier transform or 
that the transform noise is completely coherent so that 
block averaging gives no improvement. Cooper(24) has 
tested this point by simulation and shown that such 
transform noise is coherent and is not reduced by 
block averaging. If the transform noise is larger than 
the small signals of interest in the frequency domain 
then further block averaging will not improve the 
signal-to-noise ratio of interest and the only alterna- 
tive is to perform a high dynamic range Fourier 
transform by which means the Fourier transform 
induced noise will be minimised (see Section 4.3). 

2.6.4. Double length averaging. In a low dynamic 
range situation when the available computer word 
length is such that overflow is about to occur during an 
acquisition, it is possible to continue averaging by 
scaling down the memory contents, the digitised input 
and the ADC resolution, usually by a factor of two or 
four. 

However, in the presence of a large signal from, for 
example, a solvent this is not possible because at a 
certain point the noise level will drop below one count 
in the ADC and if the small signals of interest give rise 
to modulations of the large decay which are the same 
order of magnitude as the noise, then at this point they 
will be distorted by the increasing quantisation errors. 

It is possible to overcome this problem by storing 
the accumulated FID just before the point of overflow 
on backing store or in memory. Successive sets of 
accumulated FIDs can be added into the same area in 
a double length format, thus effectively doubling the 
word-length of the computer. 
IP\\IRC ,I I-C* 

In order to realise the increased dynamic range it is 
not always necessary to perform a double length 
Fourier transform (see Section 4.3.2) because the least 
significant bits may only contain noise and in that case 
the total word can be normalised to single length. 

Figure 9 shows an example of signal averaging in a 
high dynamic range situation. The sample consisted of 
a small amount of ethylbenzene in benzene solution 
with some C6D6 to provide a lock. Only the aliphatic 
region is shown. The top trace (a) represents the 
Fourier transform after 64 scans using a 10 bit ADC 
into a 16 bit computer word. At this point overflow 
would be imminent so the ADC resolution is divided 
by four as is the input signal and the computer 
memory. This now allows a total of 256 scans to be 
accumulated and this result is shown in (b). Finally the 
ADC resolution, input signal and memory contents 
are again divided by four to allow a total of 1024 scans 
to be measured. The result of this is shown in trace (c) 
and clearly now the signal-to-noise ratio is beginning 
to deteriorate. The bottom trace (d) is the result 
obtained by accumulating 1024 scans using a 10 bit 
ADC and transferring the data to backing disc every 
64 scans when overflow became imminent. After 1024 
scans the computer word contains about 20 bits due to 
the large signal. However the signal-to-noise ratio is 
such that at least the five least significant bits contain 
noise information (assuming one count per scan) and 
hence the data can be scaled to give a 16 bit word 
whereupon it is Fourier transformed in the normal 
way. 

If the time domain dynamic range (which is usually 
less than that in the frequency domain) is such that 
normalisation of the data back to the length of the 
computer word causes loss of signal information, it is 
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FIG. 10. Summary of the situations encountered for signal averaging in FTNMR and the techniques 
necessary for a successful result. 

then necessary to perform a double length integer or considered in the light of the dynamic range to be 
floating-point format Fourier transform. detected for samples with high or low sensitivity in the 

time domain. 

2.7. Summury of Averaging Methods 
Figure IO shows a flow-chart which summarises the 

possible situations that can occur when attempting 
The choice of ADC resolution, computer word signal averaging in FTNMR. By following any par- 

length and type of Fourier transform all need to be titular line through this chart, this allows one to decide 
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those techniques which are probably suitable to give a 
successful result. 

3. MAiXlPULATIONS PRIORTO I;OURIER 

TRANSFORMATION 

Until very recently, the question of what inform- 
ation can be gained by adding zeroes to the end of a 
free induction decay prior to Fourier transformation 
had been left in a rather imprecise and unsatisfactory 
state. 

Bartholdi and ErnstCz5’ have shown from the prin- 
ciple of causality (i.e. that the FID is zero for t < 0 and 
real for 0 < f I T) that for a free induction decay 
lengthened by an equal time period of zeroes in- 
dependent information in the FID is obtained on 
Fourier transformation. 

In practical terms, in order to resolve two peaks with 
separation Fmi, which will appear in the FID as a beat 
of period F;& the acquisition time and hence the 
number of data points should be such that one 
observes at least half a cycle of this period i.e. 
T = (2F,J- ’ or the time domain resolution is 
F,i, = (277-l. To prevent aliasing it is necessary to 
sample at twice the highest frequency in the spectrum 
and this gives a resolution in the frequency domain of 
T-l, where only half the data points are real. Adding 
to the FID an equal number of zeroes will double the 
point resolution in the frequency domain to be iden- 
tical with that in the time domain, and as Bartholdi 
and Ernst’2s’ have shown these additional points are 
independent of the original set. For this reason the 
integrated signal-to-noise ratio in the frequency 
domain will be J2 times higher, but the peak height 
which is defined by the existing points will remain the 
same. However, if the new points are shifted by a 
frequency of (277-l so that they lie on top of the 
original set, this will result in an overall improvement 
in signal-to-noise by ,/2 although now the inter- 
polated lineshape is degraded back to the original 
result. This is not the complete story, however, because 
it can be easily shown that adding more zeroes to an 
FID can give an additional improvement in peak 
lineshapes and positions. BerglandQ6) has coined the 
term “picket-fence” effect to show why additional zero 
filling can improve the information content in a 
spectrum. In the frequency domain the spectrum 
consists of a series of sticks (hence the “picket-fence”), 
T-l Hz apart. the intensities defined by the Fourier 
coefficients. However, because of the nature of the 
digitisation in the time domain which also consists of a 
series of delta functions the Fourier transformation 
should not be considered as a series of sticks but a 
series of sine functions, T- ’ Hz apart, with amplitudes 
given by 

sin [(r - n,‘T) T] 

(V - 12’T) T 

TAHLX 5. E&XI of Fourier interpolation on the definition of 

peak heights 
_____~. 

No. of Fractional value 
data points Point of ol’ Fourier 

(multiples 0r overlap Or coefficient midway 
original) sine functions between functions 

I 42 0.637 
2 xl4 0.900 
4 nl8 0.975 
x x/16 0.994 

16 11132 0.998 
32 n/64 1.000 

where II is the harmonic number (l/T, 2/T, 3/T, etc.) of 
each frequency. Thus zero filling gives additional sine 
functions which are interleaved between the original 
points in order to describe the intensities more 
accurately. 

Table 5 shows the fractional value of the Fourier 
coefficients exactly half way between adjacent sine 
functions for various degrees of zero filling. 

When attempting to resolve two peaks, the best 
possible situation would arise where a data point came 
exactly at the top of each resonance and here zero- 
filling by a factor of two would just give the potential 
time domain resolution but with no data points 
separating the peaks. For the general case Table 5 
shows that to obtain greater than 99% of the intensity 
information at the most eight times the original 
number of data points will be required for the most 
favourable case. Also, in the most adverse case, a 
further doubling of the number of data points will give 
about the same proportion of the full intensity. i.e. an 
upper limit of 16 times the number of original data 
points is the maximum required. 

As a practical demonstration we have measured the 
doublet arising from the protons of two non- 
equivalent methyl groups in dimethylformamide, with 
a separation at 90 MHz measured as 11.4 Hz. The FID 
was acquired into 16k data points and exponentially 
weighted such that the doublet was just resolved. 
(Knowing the separation, the line broadening to just 
merge the peaks is merely a factor of ,/3 ; this assumes 
Lorentzian lineshapes and can be obtained by double 
differentiation of the lineshape function for two over- 
lapping lines). The FID was then truncated to 256 data 
points such that half of one cycle of the beat frequency 
was still observed. In order to demonstrate a zero- 
filling of x 64 we had to choose a system which gave 
haif a cycle of the beat frequency of interest and which 
decayed within 256 data points. The former was 
accomplished by adjusting the spectral width and the 
latter was realised using exponential weighting. Figure 
11 shows the result of Fourier transformation of this 
256 point FID with various amounts of zero filling. 
The appearance of the doublet does not improve 
significantly beyond a zero filling of x 32. 

In some cases the available computer data memory 
is insufficient to allow zero filling and although this 
could be overcome by using the disc-based Fourier 
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FIG. 11. The effect of zero filling a 256 point FID by the 
factors shown in order to improve the definition of a doublet. 
The spectrum displayed is the broadened methyl doublet of 
dimethylformamide such that one half cycle of the beat 
frequency arising from the doublet separation came within 
256 data points and also decayed to within a few bits of zero. 

transform which has recently become available, this 
new development has not yet been implemented in 
many user data systems. 

An alternative method of obtaining the same in- 
formation as from zero filling was first suggested by 
Pajer and Armitage,“‘) and this involves complex 
interpolation of segments of the total spectrum. 
Bartholdi and ErnstCz5 were the first to propose this 
general method although their complex interpolation 
function would be difficult to program. Additional 
data storage is only needed for the interpolated points 
chosen and also if only temporary data storage is 
required the complete spectrum may be retained on 
backing store. 

The revised m&hod for a single phase detection 
system which uses the conventional Fourier transform 
software, in which one conventionally performs 
Fourier transforms on only real data, is as follows : 

(i) obtain a normal complex frequency domain 
spectrum consisting of N/2 real and N/2 im- 
aginary points from an N point FID. 

(ii) select a complex segment of the original; this 
must be a sub-multiple of two of the original if 
the fast Fourier transform routine is to be used 

(e.g. N’ complex points) and set the imaginary 
part to zero. 

(iii) take the inverse Fourier transform to obtain an 
N’ point real pseudo-FID. This can be thought 
of as a normal FID sampled at twice the 
segment spectral width for the original ac- 
quisition time. 

(iv) resolution or sensitivity enhancement functions 
may be applied to this pseudo-FID. 

(v) it is now possible to zero-fill this decay by N’ or 
more points and to Fourier transform in the 
usual way to produce an interpolated segment 
which can be phase corrected and processed as 
a normal spectrum. 

For a spectrometer system using quadrature phase 
detection which yields a complex FID it is more 
suitable to take the complex frequency spectrum 
segment and to take the complex inverse transform to 
produce a complex pseudo-FID. After this, it is 
possible to apply sensitivity or resolution enhance- 
ment functions, zero-fill with complex points and take 
the normal complex Fourier transform to give a 
complex interpolated segment. 

The resolving power of the method is the same as 
normal zero-filling although mathematically distinct. 
Oscillations are often seen on the wings of the peaks as 
a result of the pseudo-FID not being zero at the end. 
An extra constraint is that the chosen segment must 
not contain any peaks which extend past the edges. It is 
necessary to realise that apart from the usually ob- 
served absorption spectrum there is a dispersive 
component and in fact peaks in this representation 
extend much further than the absorption components. 
The dispersive tails extend throughout the whole 
spectrum but do decay such that it is possible to ignore 
any inaccuracies caused by such truncation. 

For cases of narrow peaks superimposed on wide 
lines in narrow spectral widths, the truncation errors 
introduced make straight-forward segmental interp- 
olation impossible. This problem may be overcome by 
applying a resolution enhancement to the original FID 
thus narrowing the lines in the frequency spectrum 
before selection of the segment to be interpolated. Any 
distortions introduced into the line shape can be 
removed at the stage of the pseudo-FID by applying 
an inverse function. For example if the original FID is 
multiplied by [ 1 - exp( - t/k)] to remove broad wings, 
this being the convolution diyerence method, then at 
the stage of the pseudo-FID this can be multiplied by 
[l - exp(-t/k)]-‘. 

Since it is not always possible to choose a spectral 
segment (this has to be a fraction l/2” of the original if 
the discrete Fourier transform is to be used) which 
does not have a resonance near the edges, a suggestion 
has been made to apodise the segment at the ends using 
a cosine function”“’ prior to inverse Fourier 
transformation. 

To summarise therefore, the addition of more than 
N zeroes to an N point FID can yield more spectral 
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FIG. 12. The etIect of allowing the FlD born a single line to have a finite value at the ends of the acquisition. A 
12 bit ADC was used and the diagram shows the Fourier transforoted result for a level ofO,2,4 and 6 bits at 

the end. 

information. True, the extra points over the first N 
added zeroes do not after Fourier transformation give 
independent information but the original points have 
the correct values and the extra points provide a (sin 
x)/x type interpolation. In some cases, these points 
serve to define a line better or to give a peak position 
more precisely, but modern software packages often 
now incorporate methods in the plot routines to 
provide some sort of interpolation on output (see 
Section 5.5). 

3.2. Sensitivity Enhancement 

3.2.1. Introduction. This section covers those tech- 
niques which have been applied to NMR data in order 
to improve the sensitivity of the final result. In general 
some compromise is reached on the balance between 
sensitivity and linewidth. A major review by Ernst(29) 
in 1966 elegantly and comprehensively set out the 
theoretical background both for CW-swept spectra 
and for the pulse-Fourier transform case. As a con- 
sequence of this monograph, we will only consider 
those techniques which have been applied on Fourier 
transform NMR data systems. 

3.2.2. Apodisation methods. The earliest attempts at 
apodisation, which reflect the true use of the term, were 
simply to ensure that at the end of the acquisition 
period the FID had decayed essentially to zero, thus 
removing errors in the transformed result due to 
truncation. The effect of truncation is shown in Fig. 12 
which illustrates the distortions introduced if the FID 
has non-zero signal intensity at the end of the ac- 
quisition. Also it should be noted that the linewidths 
are narrower in the truncated examples because of 
what are essentially longer T;” relaxation times. 

The simplest way to ensure a zero in the last channel 
is to multiply the FID, channel by channel, by a linear 
function with an initial value of one and a final value of 
zero (see Fig. 13b). Since most of thesignal information 
is in the early part of the FID. this method improves 

the final signal-to-noise ratio in the spectrum, but the 
lineshapes are no longer Lorentzian and can be badly 
distorted by “wiggles” on either side of the reson- 
ances, according to the degree of apodisation. 

At (a) At I\ (b) 
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FIG. 13. The form of the various apodisatioo functions used 
to improve either the sensitivity or resolution of an NMR 
spectrum. (a) An uoweighted FID. (b) Linear apodisatioo. (c) 
Increasing exponential. (d) Trapezoidal resolution eohaoce- 
meot. (e) Decreasing exponential. (f) Convolution difference. 
(g) Sine-bell. (h) Shifted sine-bell. (i) LIRE. (i) Gaussian 

traosfororatioo. 



46 J. C. LIN~ON and A. G. FEKKIGE 

If however, the universally used negative exponen- 
tial weighting function (Fig. 13e) is applied to the FID, 
the lineshape remains Lorentzian after transformation 
and all the linewidths increase by the same amount. 
This method improves the sensitivity and does not 
introduce any lineshape distortions. 

If the signal-to-noise ratio in the final spectrum is the 
only criterion then there will be an optimum value of 
the broadening, depending on the linewidth of interest. 
The optimum or matched filter is simply an exponen- 
tial weighting with the same time constant as the 
experimental decay. Multiplication of the decay by an 
exponential with the same time constant results, after 
transformation, in a line with twice the width of that 
resulting from an unfiltered decay. 

It is possible to calculate the effect that various 
values of the exponential filter have on the signal-to- 
noise ratio in the frequency domain and on the noise 
content of the FID.“’ First it is necessary to define the 
signal-to-noise ratio in the frequency domain in a 
quantitative fashion. Let us assume for simplicity a 
single line on resonance detected using single phase 
detection, although this is not a realistic situation. The 
time domain signal f(t) is : 

f(t) = M, exp ( - l/T;C). (16) 

Sincef(t) = 0 for t < 0 or t > T, the acquisition time, 
then the signal intensity in the frequency domain after 
Fourier transformation from Parseval’s theorem is : 

2 
w-1 = MO 

I 
exp (-t/T’) dt (17) 

0 

= M,T;C (1 - exp (- T/T:)). (18) 

The r.m.s. value of the noise N(j) is given by 

N(f) = nb’ Cn(W dt]“‘, (19) 

where n(t) is the instantaneous noise fluctuation. This 
can be replaced by an r.m.s. average if n(t) has a high 
frequency compared to the acquisition time T; then 

N(j) = iiT”‘. (20) 

Thus 

S/N(f) = : ( T;)li2 
112 

[ 1 - exp (- T/T:)]. 

(21) 

A number of well known experimental conclusions are 
clear from eqn (21). Since the signal-to-noise ratio 
depends on T?, a long T2* gives a sharp line after 
Fourier transformation and hence a higher signal-to- 
noise ratio in the frequency domain than a line with a 
shorter T:. If the acquisition time T is short compared 
with T2* then S/N(J) will be increased, but the 
truncation of the FID as a result of Tz being of the 
same order as T will make this an unacceptable 
situation. However, a long acquisition time gives a 
higher proportion of noise and hence a lower S/N(J). 
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FIG. 14. The signal-to-noise ratio obtainable in the frequency 
domain as a function of the acquisition time T. (To make this 
parameter unit free the ratio T/T: has been chosen). The 
curve marked 1.0 is for an unfiltered FID. The figures 1.5,2.0 
and 3.0 correspond to an exponential weighting giving that 
factor of line-broadening; 0.8 and 0.1 represent the result of 
applying an increasing exponential to give line narrowing to 

those fractions of the original. 

Now, turning to the question of multiplying a FID 
with an exponential function having a time constant of 
TT/k, then eqn (18), eqn (20) and eqn (21) become : 

S(f) = $g Cl - exp ((-k + l)T/T:)] (22) 

C 

T;” 1 
l/Z N(f) = ii - (1 - exp (-2kT/T2*)) 

2k 
(23) 

ww-1 = 
M,( 2kT:)“’ 

ti(k + 1) 

(1 - exp (-(k + I)T/T:)) 

’ (1 - exp (-2kT/T,*))‘12 
(24) 

As k tends to zero, eqn (24) approaches eqn (21). 
The effects of truncation and exponential weighting 

on the signal-to-noise ratio in the transformed spec- 
trum are shown in Fig. 14 with curves calculated from 
eqn (2 1) and eqn (24) for various degrees of exponential 
weighting. 

The unfiltered response (k = 0) gives a maximum 

signal-to-noise ratio if T = 1.2T2*. A matched filter 
corresponds to k = I, and here the signal-to-noise 
ratio is essentially constant for T greater than about 
2T;c. 

In a real spectrum it is not possible to choose the 
optimum filter for lines of different widths, and in fact it 
may not be desirable to apply the optimum filter 
because of the resulting increase in linewidth, and so 
some compromise is usually reached. 

Exponential weighting functions are described on 

commercial systems either by a line broadening para- 
meter in Hz, LB, or a sensitivity enhancement para- 
meter in seconds, SE. The former is preferred since it 
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relates to the effect on the final spectrum irrespective of 
acquisition parameters; LB is simply (nSE)- ‘. 

Having obtained in eqn (24) an expression for the 
signal-to-noise ratio after Fourier transformation as a 
function of T;C and the exponential lilter value, it is 
possible to divide this by the signal-to-noise ratio in 
the FID (the height at t = 0, i.e. M, divided by fi, the 
r.m.s. noise level) to obtain the ratio of the signal-to- 
noise values in the two complementary domains. 

This will be essentially the same as eqn (24) but 
including a term F’/* where F is the spectral width of 
interest. This is because the fIuctuating noise voltage at 
any point in the time domain is sorted out according to 
its frequency components by the Fourier transform 
process and thus any one point will only contain l/F of 
the amplitude in the time domain or for r.m.s. voltages 
the noise level will be F times lower in the frequency 
domain. Thus 

S/W 1 (2kT;F)“* 

S/N(FID) = (k + 1) 

(1 - exp (-(k + l)T/T?)) 

’ (1 - exp (--2kT/T:))“* 
(25) 

This expression can be simplified if we ensure that 
T >> T; and then 

S/W’) = (2kT;F)“’ 

S/N( FID) (k + 1) 
(26) 

This expression applies if single phase detection of a 
single line on resonance is used. It would be J2 times 
larger for quadrature detection and a factor of two 
smaller for single phase detection with the signal off- 
resonance when the offset frequency will cause the FID 
to have both positive and negative excursions and 
S/N( FID) will be apparently twice as high. In that case 

S/W 1 
S/N(FID) 

= (y>,:’ (A). (27) 

k can be redefined in terms of a sensitivity enhance- 
ment parameter E(E = T;C/k), or a line broadening 
parameter L, (L = k/nT;L). 

S!NJ) 
S/N( FID) 

= (&) (;y’* (28) 

= (nTz+ l)(F)“* (29 

For the optimum filter 

(30) 

for the case of single phase detection off-resonance. 
Equation (30) shows that the signal-to-noise ratio 

differences in the two domains can be substantially 
different, e.g. for F = 1 kHz and T; = 1 second then 
this ratio is about 11 or for quadrature detection on 
resonance this ratio would be z 32. 

3.3. Resolution Enhancement 

3.3.1. Introduction and spectroscopic methods. The 
techniques ofresolution enhancement have been much 
less well documented than those ofsensitivity enhance- 
ment and with the advent of digital signal processing 
regimes it is possible that some real gains in inform- 
ation content may be obtained in an analogous way to 
zero-filling. 

Resolution enhancement falls into two main classes. 
Firstly special experiments can be designed which 
cause line narrowing. These, such as the spin-echo 
pulse sequence(5.30) are outside the scope of this review 
and have been summarised by Campbell.(31) The 
second method involves manipulation of the acquired 
data in some way and the various methods so far 
suggested are described in the next paragraphs and 
their relative efficiencies compared. These latter 
methods involve multiplying the FID by a function 
which increases the intensity at the latter end of the 
FID at the expense of the initial part. Thus they will 
cause a selective enhancement of some linewidths at 
the expense of others and this property can be utilised 
for baseline flattening. There will be a decrease in the 
observed linewidth with a corresponding decrease in 
the signal-to-noise ratio. All functions aim to improve 
the resolution with a minimum loss in signal-to-noise 
ratio and hopefully minor signal distortions. 

It has sometimes been statedcJ5) that the inform- 
ation content of an FID and its Fourier transform are 
identical and that if there is no evidence ofresolution in 
the frequency domain, then resolution enhancement 
cannot work. However, we have seen that zero filling 
an FID can yield new information and if one assumes 
that the NMR lines are Lorentzian then meaningful 
deconvolution can also be performed. 

There is one special case in which the free induction 
decay is modulated by a low frequency beat, the 
characteristics of which are fixed by the spin system. 
Moniz and co-workers(32) have shown that selective 
Fourier transformation of the beat modulated FID 
allows one to separate the broad and sharp com- 
ponents. For example the FID arising from two lines 
close together will contain two frequencies, one in- 
dicative of the offset from the r.f. carrier and the other a 
function of the separation between the two lines. 
Clearly transformation of that part of the FID consist- 
ing of the initial decay before the first null point can 
give no information on the doublet separation but 
Fourier transformation of the beats will allow resol- 
ution to be obtained even though an absorption 
spectrum will not result. This can be obtained by 
adding in to the transformed beat spectrum a portion 
of the transformed initial decay. The method has been 
applied to ‘H-coupled 13C NMR spectra where long 
range 1 3C-1 H couplings have been resolved. 

Finally, distinction should be made between resol- 
ution and linewidth because it is possible to improve 
the resolution in a spectrum by altering the lineshape 
but leaving the linewidth at half height unchanged. 
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3.3.2. Convolution difference. This method has been 
applied to both CW and FT NMR spectra, since it is 
usually applied to the frequency domain spec- 
trum.(33,34) Here, a spectrum is obtained and copied 
into a separate area of memory. One copy is broadened 
by the application of a smoothing function and a 
fraction of this is subtracted from the original. The 
broader version of the spectrum obtained in an FT 
experiment, is simply a result of using a larger 
exponential weighting. Thus in the time domain the 
same result can be obtained by multiplying the FID by 
a function A, given by 

A,=l-uexp(-bt/T) (31) 

where a is the fraction of the broad component, b 
represents the time constant corresponding to the 
extra line broadening introduced, and T is the ac- 
quisition time (Fig. 130. 

3.3.3. Increasing exponential. This involves multi- 
plying the FID by a positive exponential function (Fig. 
13c) 

A, = exp (bt/T) (32) 

where b is chosen empirically. In the limit b could 
exactly balance the natural decay time, T;C, of the FID 
and produce a nondecaying truncated interferrogram 
corresponding to a d-function. However, then line- 
shape distortions are introduced and the noise 
increase is overwhelming. Usually some compromise is 
sought but often only very modest enhancements are 
possible before the signal-to-noise ratio decreases 
markedly. 

A quantitative treatment of the linewidth reduction 
that is possible for a given signal-to-noise ratio in the 
frequency domain can be made by reformulating eqn 
(24) to take account of a positive exponential weight- 
ing. The effect on the final signal-to-noise ratio of 
applying an increasing exponential is shown in Fig. 14 
as a function of T/TZ*. Clearly, if the acquisition time is 
prolonged such that at the end of the FID only noise is 
being gathered, the final signal-to-noise ratio will be so 
low as to give a meaningless result. The diagram shows 
the degradation in the signal-to-noise ratio as a result 
of applying an increasing exponential for a 20% and a 
90% reduction in linewidth. 

3.3.4. Trupezoidulfinction.‘35’ This is an improve- 
ment on the simple exponential in that it reduces the 
beginning of the FID but leaves the latter part 
relatively unaffected (Fig. 13d). It is also essentially the 
same as the convolution difference method except that 
more lineshape distortions are introduced. 

In this case the FID is multiplied by the function 

A, = btJT 

A, = 1 (I 2 T/h) 

The parameter b( < T) can be varied empirically to 
obtain the desired result. 

3.3.5. Sinehell junction. ‘3h’ This method involves 
multiplying the FID by a sinewave of zero phase and 
period of twice the acquisition time 

A, = sin (m/T) (34) 

In this method there are no empirical parameters to 
adjust (Fig. 13g). 

The sinebell function affects both the beginning and 
end of the FID equally but usually the decay has 
vanished into the noise well before the end of the 
acquisition time and hence the convolution has the 
result of affecting the initial part of the FID most. Of 
course, an arbitrary parameter can be introduced into 
the sinebell routine just as in convolution difference 
where it is possible to vary the proportion of broad 
signals to be subtracted and this allows some control 
over the final sensitivity. 

The shifted sinebell method is a modification of the 
original function in which a phase parameter has been 
addedt3’) (Fig. 13h). This then allows the maximum in 
the sinusoidal envelope to be adjusted to the com- 
ponent of interest in the FID 

A, = sin (m/T + 4) (35) 

Recently Clin et ~1.‘~~) have shown that the sinebell 
routine can be achieved simply without the need to 
program the algorithm explicitly. The lineshape ob- 
tained after sinebell manipulation can be produced by 
adding two dispersion Lorentzian functions shifted by 
one computer address and 180” out of phase. In 
practical terms, the Fourier transform of an FID is 
calculated and, after phase correction to the dispersive 
component, is copied into a separate area of memory. 
This second block is left shifted by a single address and 
from this is subtracted the original version. A propor- 
tion of the original signal can be added back in, such 
that the final signal-to-noise ratio is not too seriously 
degraded, but of course this leads to a proportional 
degradation in the linewidth back towards the 
original. 

Gueron(37’ has summarised the similarities between 
the convolution difference and sinebell approaches 
and the methods have been generalised. He also 
showed that the sinebell is simply equivalent to the 
approach of Clin et ~1.‘~~’ in that it represents the 
difference between two dispersive signals separated by 
one computer address. He has also shown that by 
adding a phase parameter to the sinebell routine. that 
this is equivalent to adding in a proportion of the 
original absorption signal to the dispersion difference 
spectrum. This lessens the troughs on either side of the 
resonance and improves the sensitivity with the con- 
comitant compromise on resolution. 

The sinebell function can be written as sin (2rcFt) 
where F = (2T) ’ but larger values of F cause single 
narrow peaks to split into two. 

3.3.6. LIRE Function. Akitt”“’ has discussed the 
various forms ofdistortion introduced into a spectrum 
by the use ofdifferent deconvolution functions. He has 
proposed a new function which he calls LIRE and 
which reduces the rate of decay of an FID (Fig. I3i) 

,/$ = ____-_.!!__, 
(u - I) exp (-r/T) + I 

(36) 



Digitisation and data processing in Fourier transform NMR 

CH,O 

49 

s i 6 i i 3 ia 
FIG. 15. The effect of Gaussian deconvolution on the 90 MHz ‘H NMR spectrum of trimethoprim in 
DMSO-d,. Application of the function in eqn (37) enables the resolution of the long range coupling 
constants. 1250 Hz width, Sk data points zero filled to 16k before Fourier transformation, 600 Hz displayed. 

This sigmoid function for a > 10 at first follows closely 
exp (ti T) but eventually falls back to a constant value. 
At this stage the weighting function gives a rather 
unfavourable signal-to-noise ratio but this can be 
overcome by further apodisation of the FID using a 
function which converts the lineshape to that arising 
from a power function of n (n = 1 corresponds to 
a Lorentzian, n = 2 to a Gaussian). Consequently with 
this apodisation the method resembles Gaussian de- 
convolution (Section 3.3.7). 

Another method analogous to the LIRE function 
has been suggested by Semendyaev’40)which involves a 
two stage manipulation of an FID. First the linewidths 
are narrowed by multiplying the FID by a positive 
exponential. Then the signal-to-noise ratio of the 
spectrum is increased towards that of the original by 
multiplying by a cosine weighting function. 

3.3.7. Gaussian Transformation.‘41) In this case the 
FID is multiplied by a combination of a positive 
exponential to cancel the natural negative decay of the 
component of interest followed by a negative squared 
exponential with an appropriate time constant to 
produce a Gaussian line of the desired reduced width. 

A, = exp (at/T - b(t/T)2) (37) 

Here (I and h are parameters which can be calculated 
for a single line and which are chosen empirically in a 
complex spectrum (Fig. 13j). This method gives the 
best resolution enhancement for a given signal-to- 
noise ratio and consequently has now been adopted by 
the majority of instrument manufacturers. 

An example of this technique is given in Fig. 15 
which shows the 90 MHz ‘H NMR spectrum of the 
widely used antibacterial compound trimethoprim. 

Normally couplings between the methylene and the 
various aromatic protons are not observed, but op- 
timum application of the Gaussian deconvolution 
reveals the expected coupling patterns. 

3.3.8. Enhancement of absolute value spectru.‘42) The 
absolute value or magnitude mode (i.e. (v2 + u2)‘/*) 
instead of the conventional absorption or v-mode has 
the disadvantage that each transition has extremely 
wide wings as a consequence of the fact that the 
dispersion or u-mode extends further from resonance. 

1 
v(4 = 

(w - 00) 
1 + (w - w#T:2 

; u(o)= 
1 + (w - o(-JZT2*’ 

(38) 

That is, from the form of the Lorentzian lineshape 
the v-mode signal tails off proportional to (w - o~)-~ 
but the u-mode only decreases as (or - wo)-l for 
cases with large offset from the peak maximum, 
(w - o~)‘T:~ B 1. Also, the absolute value mode is 
not additive for the overlap of adjacent transitions 
since the left and right hand wings of the dispersive 
component of each line have opposite signs and tend 
to cancel each other. 

Since the Gaussian decay is an even function the u- 
and v-modes have the same frequency dependence, and 
this makes the Gaussian deconvolution technique a 
convenient choice for processing absolute value 
spectra. 
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FIG. 16. The 90 MHz ‘H NMR spectrum of propylene oxide, excluding the methyl signal, obtained by 
Fourier transformation of the half-echo following a Carr-Purcell type A sequence with 5 = 0.06 sec. Trace (a) 
is the absorption mode and trace(b) the dispersion mode signal. Trace(c) is the absolute value presentation. 
Trace (d) shows the result of applying the double exponential weighting given in the text and plotted as 

absolute value. 

The standard method of measuring spin-spin relax- 
ation times is through the use of the Cart-Purcell spin- 
echo sequence. However, coupling between resonant 
nuclei gives rise to modulations of the spin echoes’43) 
which produce phase modulation of the resonances in 
the transformed spectra. For simple spin systems with 
first order couplings, even though they may be in 
complex molecules, the phase distortions can be 
analysed and even utilised to simplify spectra but in 
general very complex J-modulation results. In ad- 
dition, J couplings which are not resolved also cause 
amplitude modulation of the signals. One way of 
overcoming these distortions is to present the spectra 
in absolute value mode but for anything but very 
simple spectra the distortions caused by overlap 
preclude intensity measurements. All these difliculties 
are overcome by deconvoiution using the Gaussian 
method’41’ and presenting the spectra in absolute 

value mode. As an example, Fig. 16 shows the resultsof 
Fourier transforming the second half of an echo 
formed by a “9P-~-180”~~ acquire” sequence for 
propylene oxide in DMSO-d6 at 90 MHz. The methyl 
signals are not shown and the data was obtained with 
r = 0.06 sec. Trace (a) is the o-mode display and trace 
(b) the u-mode display, both showing severe echo 
modulation, whilst trace (c) shows the absolute value 
display indicating the non-additivity of overlapping 
transitions. After multiplying the FID as set out in eqn 
(37) with a = 55 and h = 201.7 and Fourier transform- 

ing, trace (d) is obtained. Here intensity measurements 
are quite feasible either by peak height or by integra- 
tion and for a given resonance the intensity will still 
decay with a time constant of Tz for different z values. 

The newly expanding area of two-dimensional 
Fourier transform NMR’6.44’ with the difficulties 
associated with phase correction has seen the other 
major use of absolute value presentation with the 
concomitant wide wings and non-additive overlap. 
Again Gaussian deconvolution with an absolute value 
presentation can give an enhanced appearance to the 
spectrum. 

The Fourier transformation of the beats in a beat- 
modulated FIDt3” (Section 3.3.1) leads to a non- 
absorption spectrum and, as an alternative to adding 
in part of the original absorption spectrum to produce 
a less distorted lineshape, presentation of the result as 
an absolute value spectrum would also remove most of 
the lineshape distortion. 

3.3.9. Comparison qf’the methods. Figure 17 shows a 
comparison between most of the methods which 
involve computer manipulation. We have simulated a 
typical noise-free FID which on transformation gives 
the top left spectrum in the diagram. This can be 
considered as arising from a spectral width of 1000 Hz, 
with 8192 data points (an acquisition time of 4.096 
seconds). The initial linewidth was 1.165 Hz cor- 
responding to T: = 0.273 seconds. The separation of 
the lines in the 1 : 4: 6:4: 1 quintet was 0.98 Hz. The 
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FIG. 17. A demonstration of some of the various computer methods for resolution enhancement. The left 
hand traces result from Fourier transforming a synthesised FID giving a single resonance and a 1: 4: 6: 4: 1 
quintet. The right hand traces result from the same FID with noise added. (a) Initial spectrum,(b) trapezoidal 
function, (c) positive exponential, (d) convolution difference, (e) sine-bell, (f) LIRE, (g) Gaussian deconvol- 
ution. The enhancements were all applied to give the same linewidth reduction (to 45%) with optimum signal- 
to-noise ratio. The sine-bell provided an exception since because there are no adjustable parameters, a wider 

linewidth and consequently a better signal-to-noise ratio was achieved. 

right-hand traces arise from the same FID with noise, 
sampled at the correct rate, added. A reduction in the 
linewidth to 0.45 of its initial value was selected as 
being a reasonably typical maximum and the para- 
meters were adjusted to give the optimum signal-to- 
noise ratio. 

Trace (a) is the initial spectrum, (b) is the result of the 
trapezoidal function, (c) increasing exponential, (d) 
convolution difference, (e) sine-bell, (f) LIRE, and (g) 
Gaussian transformation. From the left-hand traces it 
is obvious that the trapezoidal function, convolution 
difference and sine-bell all give serious base-line distor- 
tions, particularly for convolution difference when 
attempting large enhancements. In this case there is a 
compromise between signal-to-noise ratio and base- 
line distortion. The advantage of the rising exponential 
is that the Lorentzian lineshape is retained but the 
resolving power may not be so good because of wing 
overlap. The Gaussian method converts the 

Lorentzian lines into Gaussians which do not have the 
wide wings. In practice it is possible to over-enhance 
both for the Gaussian and LIRE methods such that 
any wings disappear, giving better resolving power. 

The results on the right-hand side for an FID 
containing noise are really a comparison of the 
achievable signal-to-noise ratio for a given reduction 
in the linewidth. The increasing exponential gives such 
a large expansion of the noise at the end of the FID 
that, on scaling, the signal part of the FID is com- 
pressed into fewer bits leading to quantisation errors 
which are responsible for the periodic nature of the 
noise. The trapezoidal function, convolution difference 
and LIRE all give similar signal-to-noise ratios be- 
cause they all involve multiplication of the FID by a 
function which increases and then becomes approxi- 
mately constant. The LIRE method is the optimum 
function of these three because of the level baseline 
produced. A comparison of the sinebell and the 
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Gaussian methods shows them to have similar signal- 
to-noise ratios even though it was necessary to accept a 
smaller resolution enhancement for the sinebell be- 
cause there are no adjustable parameters in this 
method. The sinebell technique gives a higher band- 
width of noise presumably because ofthe wider shape of 
the function. The Gaussian method although it in- 
volves empirical parameters is preferred because of the 
better baseline and signal-to-noise ratio for the same 
reduction in linewidth. The Gaussian and LIRE 
functions give almost identical results except that the 
signal-to-noise ratio is better for the Gaussian method. 
This is because Gaussian dewnvolution cuts out noise 
at a point at which the LIRE function is constant 
except for apodisation in the latter case of the last few 
addresses. 

The principal conclusion of these comparisons is 
that the Gaussian method gives the best signal-to- 
noise ratio for a given reduction in linewidth and also 
produces the minimum baseline distortion. 

4. FOURIER TRANSFORMATION 

4.1. Continuous us Discrete Transforms 

The normal integral equation which defines the 
Fourier transform pair is 

i 

+UJ 
F(w) = f(t) exp ( - iwt) dt (39) 

-m 

where F(o) andf (t) are the frequency and time domain 
functions respectively. This equation can be replaced 
by a pair for the cosine and sine parts of the transform. 

C(w) = 2 
s 

m f(t) cos wt dt 
0 

(40) 

S(o) = 2 
i 

m f(t) sin wt dt. 
0 

(41) 

In a digital computer eqn (39) must be replaced by a 
discrete Fourier transform and is recast as 

N-l 

A, = N- ’ c X, exp (-2nipkfN) 
k=O 

p = 0,1,2. . . N - 1 (42) 

where A,, is the pth coefficient in the frequency domain 
and X, is the kth value of the time domain signal. 

4.2. The Cooley-Tukey Algorithm 

Evaluation of the N values of A, requires ap- 
proximately N2 multiplications and the Cooley- 
Tukey algorithm’4s’ was designed to speed up the 
process by cutting down this number to about 
2N log, N arithmetic operations. This was achieved in 
the following manner. 

Let us define a time series of N points, X,, where N is 
some power of 2; this series can be divided into two 
other series yk and Z, containing only the even and 
odd numbered terms respectively i.e., 

& = x2, z, = x2&+, k=O,l,...N/2-1. (43) 

Each series will have its own discrete Fourier 
transform 

N/Z-I 

B, = c Yk exp (-4lripkjN) (44) 
k=O 

N/2 - 1 

C, = c Z, exp (-47cipk/N). 
!f=o 

(45) 

The required result, A,, can be written in terms of the 
even and odd numbered points : 

N,2 - 1 

A, = 1 {K exp [ -4nipk/N] 
k=O 

+ Z, exp [-2nip(2k + 1)/N]) (46) 

N/2 - 1 

= ,:,, 

yk exp ( -4zipk/N) 

N,2- 1 

+ exp (- 2nip/N) c Z, exp (-4zipklN) 
k=O 

(47) 
that is, 

A, = B, + exp ( - 2xip/N) C, (48) 

For values of p greater than N/2 the Fourier trans- 
forms B, and C, repeat the values for p less than N/2. 
Therefore substituting (p + N/2) for p gives 

A P+ N/2 = B, + ew [ - 2ni(P + N/2)/N] C, 

0 I p I N/2 (49) 

= B, - exp (- 2nip/N) C, (50) 

Therefore the first N/2 and the last N/2 points of an N 
point time series can be obtained by transforming 
separately two series each having N/2 points. 

This method clearly allows further subdivisions so 
long as the new smaller time series contain a number of 
points which is a power of two. The Fourier transform 
of a single point is itself and so a Fourier transform of 
an N-point time series has been reduced to a number of 
complex multiplications and divisions. In general N 
log, N complex additions or subtractions and at most 
(N log, N)/2 complex multiplications are required. 
The Cooley-Tukey approach also introduces fewer 
rounding errors than a conventional slow Fourier 
transform. 

Since the first presentation of this algorithm a 
number of developments and variations have been 
documented and some have been implemented on 
various FT NMR data systems.‘46-4*’ The most 
important of these is attributed to Bergland(48) which 
preserves the order and symmetry of the Cooley- 
Tukey process but which gives a factor of two re- 
duction in computation and storage when the data 
is real. 

4.3. Hiyh D_wamic Ramge Fourier Transforms 

4.3. I. Noise in the Fourier transform process. We 
need only to consider this in the high dynamic range 
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FIG. 18. The methyl triplet in the90 MHz ‘H NMR spectrum ofa very small quantity ofethanol dissolved in 
H,O. The lower trace is the result of Fourier transforming the FID using a I6 bit computer. The upper trace is 
the result from a 32 bit transform in the same 16 bit computer, with the consequent decrease to halfthedigital 

resolution. 

case where, for example, a large solvent peak fills the 
ADC and the noise at the digitisation stage is limited to 
that introduced by the i-4 LSB of the ADC. A small 
signal of interest defined by only a few bits of the 
computer word may then be obscured after Fourier 
transformation by noise introduczd by the transform 
itself. Figure 18 gives an example of this which shows 
the methyl triplet from a trace of ethanol in H,O after 
Fourier transformation using a 16 bit and a 32 bit 
integer process. 

Fourier transform noise arises from rounding errors 
introduced after any multiplication or addition which 
would cause the word-length of the computer to be 
exceeded; this overflow is avoided by scaling (i.e. 
division by two), and information in the least signifi- 
cant bits is lost. 

CoopeP4’ has adapted some theoretical work by 
Welch’4g’ to predict the maximum dynamic range 
observable after Fourier transformation, D,,, 

D max = (5~/2)2~2 -(M + J)P, (51) 

where 2” is the number of data points and w is the 
computer word-length. K is defined as 
?P\VKC I4 I ,I 

K= 
r.m.s. S/N after FT 

r.m.s. SIN before FT’ 
(52) 

Equation (51) does in fact predict the general pro- 
portionality of D,,, as a function of computer word 
length but over-estimates the observed dynamic range 
by a factor of about 100. This is because the method 
assumes a single, nondecaying, sine wave in the time 
domain. Since eqn (51) over-estimates the dynamic 
range, it lends credence to the supposition that a higher 
dynamic range is possible when the data is in the form 
of a non-decaying response such as that obtained when 
using the Hadamard transform technique.(3) This has 
been questioned recently@‘) but from eqn (52) it would 
appear that if the signal-to-noise ratio before Fourier 
transformation is less for the Hadamard method 
compared to the pulse method, then a dynamic range 
gain may result when using a pseudo-random 
sequence and the Hadamard technique. 

The over-estimation of dynamic range using eqn (51) 
occurs because real data in a pulse experiment, having 
an exponential decay, will not fill the computer word at 
each location throughout the acquisition. Cooper(24’ 
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TABLE 6. Observed variation in dynamic range as a function 
of the linewidth of the large peak (16k transform, loo0 Hz 

bandwidth)(24’ 

Linewidth (Hz) 
Observed dynamic range’“’ 

16 bit word 20 bit word 

0.2 3,124 59,600 
1.0 12,496 145,512 
2.0 15,624 227,368 
5.0 30,512 693,888 

10.0 38,144 867,360 
20.0 45,474 - 

“)A simulated spectrum was obtained by summing ex- 
ponentially weighted sine-waves of various relative intensities 
and the dynamic range for a given width of the large peak 
determined by picking out the smallest observable peak in the 
Fourier transform generated noise. 

has also simulated this latter case and shown that for a 
sharp line the dynamic range does increase with an 
increase in linewidth of the large peak (corresponding 
to less of the data area being full). The results are 
shown in Table 6. 

The other variable in eqn (51) is the number of data 
points and the observed dynamic range should also 
depend on this parameter. The dynamic range will 
depend on the position of the large peak, as that may 
introduce quantisation errors (Section 2.4) but assum- 
ing that it is at the centre of the spectrum, then 
Cooper’s simulated experiments show that the dy- 
namic range may be slightly lower for larger transform 
sizes. 

Similarly it has been suggested’24’ that using zero- 
filling to increase the transform size may introduce 
noise and thus reduce the dynamic range. However, 
addition of, and multiplication by, zeroes cannot cause 
rounding errors and it is not likely that the dynamic 
range will decrease significantly. Much more no- 
ticeable is the fact that for large transforms for a given 
spectral width, the noise is increasingly better defined 
leading to an apparent increase. This is illustrated in 

Figure 19 for a 512 point data table arising from an 
exponentially weighted computer generated sine wave. 
The computer rounding errors corresponded to less 
than one count on average. The upper trace is the 
result of Fourier transforming the 5 12 point data table 
and the lower trace is the Fourier transform result after 
zero-filling to 16k points. The noise increases from a 
peak-to-peak value of 4 counts to a peak-to-peak level 
of 6 counts. Since Fourier transform noise is intro- 
duced by rounding and scaling operations any pro- 
cedure which can minimise distortions caused by such 
calculations should lead to a higher dynamic range in 
the frequency domain. 

Memory overflow is usually prevented by scaling all 
numbers such that they are always less than one fourth 
full scale. This arises because the Fourier transform 
process involves equations of the form 

A, = A, + B, cos 0 + C, sin 0 (53) 

As it is easiest in a computer to divide by 2 or 4, it is 
necessary to divide all numbers by 4 since three 
variables have to be added. Thus it is possible to lose 
one to two bits in dynamic range and for 16 bit 

FIG. 19. The etfect of zero-filling on the noise introduced by Fourier transformation of a 512 point, computer 
generated, exponentially weighted sine-wave. The main peak is not shown. The upper traceshows the result of 
transforming the 512 point data table and the lower trace, the result after zero-filling to 16k. The peak-to-peak 

noise increases from 4 to 6 counts. 
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TABLE 7. Computer wordlength requirements as a function of time domain dynamic range for 
various numbers of scans 

No. of 
scans”’ 

No. of 
bits 

tilled 

No. of 
bits of 
noise 

Min. 
wordlength 

for FTb’ 
S/W) 
bits”’ 

Min. 
computer 

wordlengthtd 

1 I2 1 I2 17 I8 
4 14 2 I3 18 19 

16 I6 3 14 19 20 
64 IX 4 15 20 21 

256 20 5 I6 21 22 
lk 22 6 17 22 23 
4k 24 7 I8 23 24 

16k 26 8 19 24 25 
64k 28 9 20 25 26 

w 1 k = 2’ o ; this column also assumes a signal-to-noise ratio in the time domain of 2” with 
adequate digitisation. 

w this assumes that it is possible to scale the computer word by powers of 2 such that there is 
one bit of noise prior to Fourier transformation. 

w this assumes a dynamic range gain in the frequency domain of 25 (this is not unreasonable 
after the application of an optimum filter). 

td’ this assumes that no noise is introduced by the Fourier transform, and includes one extra 
bit for sign. 

computers this may lead to large inaccuracies. One 
way to overcome this problem is only to scale the data 
when overflow has occurred having previously saved 
the numbers to be added. This sort of addition with a 
test at every operation would be so slow as to be 
useless in FTNMR systems. However, Cooper et 
aLc5 ‘) have shown that the simpler procedure of testing 
for arithmetic overflow (which is often part of the 
computer hardware) is relatively straightforward and 
can give a factor of 2-3 in dynamic range for 16 or 20 
bit wordlength computers. Arithmetic overflow occurs 
when the sum of two numbers, having the same sign, 
has the opposite sign. This occurs because the most 
significant bit in a computer word is reserved for sign 
information, i.e. in a 16 bit computer two positive 
numbers (bit 15 = 0) may have bit 14 set. On addition 
bit 15 would be set and this indicates a change in sign. 

4.3.2. Double length andjoating pointformat Fourier 
transforms. If the data has been accumulated using a 
double precision acquisition routine then the above 
minor improvements in dynamic range may not be 
enough to give all the possible information present in 
the FID. To summarise this, therefore, a single pre- 
cision integer Fourier transform will be sufficient in all 
low dynamic range cases. Here single precision is used 
to mean Fourier transformation using integer maths in 
a computer with a wordlength not greater than 24 bits. 
Note that a 16 bit word gives a resolution in the 
vertical axis of z 1: 215 or 1: 32768. 

In a high dynamic range situation the desired 
wordlength is related to the output dynamic range and 
indirectly to the input ADC. Thus for a single pulse on 
1000, H,O where a signal-to-noise ratio in the 
frequency domain of > 2l’ is possible a longer word- 
length than 16 bits is always required to define noise 
and small signals properly. For a 16 bit wordlength 
computer the Fourier transformation will either have 

to be in double length integer or in floating-point 
format. 

It is illuminating to observe at which computer 
wordlength and time domain dynamic range, double 
precision working becomes necessary. Table 7 shows 
the expected results for the case of an FID with a 
dynamic range of 2” (i.e. this implies at least a 12 
bit ADC) which is typical of the dynamic range 
expected when measuring ‘H NMR spectra in H,O. 
Column 2 shows the numbers ofbits filled on a backing 
store assuming the availability of double precision 
acquisition software. Column 4 shows the minimum 
wordlength to be transformed without loss of signifi- 
cant signal information and if it is assumed that the 
dynamic range is a factor of 2’ greater in the frequency 
domain then column 6 gives the minimum computer 
wordlength if a single precision integer Fourier trans- 
formation is to be performed. 

One conclusion from this table is that for an initial 
time domain signal-to-noise ratio of 2i2 if 4096 scans 
do not give a good enough signal-to-noise ratio on the 
small signals of interest, then a 24 bit integer Fourier 
transform will not be adequate. A practical demon- 
stration of the inadequacy of performing a single 
length Fourier transform is shown in Figure 20. 

Of the two forms, either double length integer or 
floating point, it is easier to envisage the double length 
integer method. Here two computer words are used to 
define each data point and normal integer maths is 
used. The disadvantages are that if double length zero 
filling is not possible because of lack of computer 
memory a further factor of two is lost in the frequency 
digital resolution. A second disadvantage is the extra 
time taken to perform the Fourier transform calcu- 
lation, especially if the computer does not contain a 
hardware multiply/divide unit. In the FT software, 
again to ensure that overflow does not occur the 
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FIG. 20. A comparison of the effects of Fourier transformation using 16 bit integer and 32 bit integer routines. 
The 90 MHz spectra shown are of the aldehyde and aromatic resonances of 0.1% p- 
dimethylaminobenzaldehyde in H,O. The top trace (a) shows the result of acquiring 20 scans and Fourier 
transforming using 16 bits. The corresponding result using a 32 bit Fourier transform is shown in trace(b). A 
significant improvement is observed showing that some of the noise is generated in the Fourier transform 
calculation. Trace (c) shows the result of transforming the sum of 700 scans using a 16 bit transform. Since 
little increase in the signal-to-noise ratio is observed most of the noise must arise from the transform. Trace(d) 

confirms this by processing the same data using a 32 bit transform. 

facility for multiplying two double length. numbers to 
give a quadruple length result before scaling must be 
included. If a disc-based acquisition sequence is 
available then the former disadvantage of lack of 
digital resolution disappears and if it is also possible to 
perform the Fourier transformation in a time-shared 
mode then the latter disadvantage of speed is also 
largely overcome. 

Using a high-field spectrometer with a 16 bit 
digitiser which in the high dynamic range case could 
give a signal-to-noise ratio in the time domain of 216 
on a single scan, and also assuming a 25 gain in 
dynamic range after Fourier transformation, then a 40 
bit integer transformation routine would still be more 
than adequate allowing up to about 16 million scans. 

For a given wordlength computer, higher dynamic 
range data can be handled if the Fourier transform- 
ation routine allows the data to be converted to the 

floating-point format. For a single computer word the 
most significant bit is retained for the sign, and the rest 
of the word is split into two areas, one set of bits 
defining a mantissa (between 0 and I) and the other 
defining an exponent (lox). For example in a 16 bit 
computer word reserving 5 bits for the exponent and 
10 bits for the mantissa allows the representation of all 
numbers between 0 and 232 (since 32 = 25) or 0 and 
2.14 x lOlo, obviously a much greater range than for 
16 bit integer in which the numbers are limited to 
between 0 and 215. Secondly, for the floating-point 
method all numbers (both large and small) are defined 
to the same absolute accuracy. In integer represen- 

tation all numbers are accurate to one count which 

would be a large percentage for a small number. For a 
16 bit or a 20 bit word use of the single word floating 
point method as defined above gives an increase in 

dynamic range over the integer method of between two 
and four bits.‘46) Since in the single length floating 
point format the number of bits defining the precision 
of a number has been reduced by five to accommodate 
the exponent it is necessary to question whether the 
accuracy of the Fourier transform result is afTected. 
For this point Cooper’51’ has shown that the in- 
tensities are seriously affected for a 16 bit (10 bit 
mantissa) Fourier transform but that these discrepan- 
cies largely disappear for a 20 bit floating-point 
transform (14 bit mantissa). Cooper et LX/.‘~” have also 
tabulated the times required for various types of 
Fourier transform using the same minicomputer in 
each case (PDP 1 l/40) and these are given in Table 8. 

TABLE 8. Times (seconds) for various Fourier Transform 
methods using a PDP 1 l/40 computer”” 

Integer Floating 
Scale on Scale on Scale on point 

Transform each pass hardware software 
size(k) overflow overflow 

I 1.17 I .67 2.40 5.14 
2 2.60 3.69 5.29 II.27 
4 5.69 8.09 It.58 24.53 
8 12.45 17.63 24.75 53.25 

I6 27.00 38.11 54.24 1 15.6”’ 

“’ extrapolated value 
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However, a single word floating-point method 
cannot give the same dynamic range as a double length 
integer transform and so on commercial systems a 
floating-point representation is used in which each 
data point is defined by two computer words. As can be 
seen from Table 8 for a single length transform the 
floating-point representation has a time penalty and so 
if a double length transform is necessary, then as both 
double length integer and double length floating-point 
provide more than enough dynamic range it is pref- 
erable to choose the integer representation which is 
faster and easier to program. 

One final point is that since the Fourier transform 
uses equations such as eqn (57), then the sin 0, cos 0 
terms should also be double length if the full dynamic 
range gain is to materialise. 

4.4. Two-Dimensional Fourier Tran$orms 

A large number of papers has already appeared on 
the many experimental aspects of ZD-NMR largely 
developed by the groups of Freeman”” and Ernst’44’ 
and we do not propose a discussion of them here, but 
we feel this an appropriate point to include an outline 
of the computation involved in obtaining an NMR 
spectrum which is a function of two frequencies. With 
the advent of disc-based operating systems allowing 
the use of virtual memory the time-consuming and 
cumbersome operation associated with attempting to 
transform large arrays in a limited memory should 
disappear. 

In order to describe the computation involved let us 
consider the case of a ZD-spin echo experiment with t, 
as a variable time parameter defining the delay 
between the 90. pulse and the centre of an echo 
following the 180’ pulse and tz being a second time 
variable running from zero to T, the acquisition time. 
The signal detected after a ZD-NMR experiment will 
be a function of both t, and tz! S(r,, t2). This is first 
transformed with respect to rz and then with respect to 
t, to produce the 2D spectrum S(w,, wJ. In the case 
given above o2 represents the normal frequency axis of 
NMR and (,>I represents a frequency axis in which only 
J couplings with lines at the natural line-width appear. 

To obtain S(tu,. ~9~) the following operations are 
performed. 

(i) 

(ii) 

(iii) 

S(r,. r2) is treated ah a conventional FID. It 
can be exponentially weighted and Fourier 
transformed to gi\e S(t,,w,). This gives a 
spectrum \vith the correct frequencies but 
phases and intensities are modulated as a 
function of I,. 
The sine and cosine transforms ofS(t,, u2) are 
stored (s” and s’ respectively). 
The parameter I, is then altered and the whole 
experiment repeated. if necessary including 
multiple scan averaging. until a series of N 
transformed spectra S(r,. (PI,) is obtained. 

(iv) For all .Y spectra the scaling which occurs 
during the Fourier transform must be kept 

(v) 

(4 

(vii) 

(viii) 

(ix) 

constant and thus the next stage in thecompu- 
tation is the overall normalisation of all the 
spectra taking into account the different 
scalings which must have occurred in the 
different spectra. 
The data at the stage of S( t , , q) are stored on 
backing disc as a series of spectra S(w,). These 
then have to be transposed to give a series of 
interferograms S(t,). The term interferogram 
has been suggested by Freeman”‘) to dis- 
tinguish the time function S( t ,, w2) from a free 
induction decay. 
A second Fourier transformation is then per- 
formed to produce S(w,,o,) the full two- 
dimensional frequency spectrum. 
The usual requirements still hold for the sam- 
pling rate and the resolution is still governed 
by this and the number of data points. 
Also exponential weighting to improve sensi- 
tivity or resolution can be performed before 
either Fourier transformation. 
The matrix S(w,, wa) in fact consists of four 
parts : The cosine part of the cosine transform, 
the sine part of the cosine transform and the 
corresponding sine transforms. For spin+cho 
spectra all four quadrants must be retained if 
the signs of the frequencies need to be 
distinguished. 
Phase adjustment of 2D J-resolved spectra 
may present difficulties (Section (5.1.4) and ab- 
solute value mode spectra are usually dis- 
played instead. 

Figure 21 shows an example of 2D FTNMR. This is 
the spectrum of a mixture of 45% ethyl chloride, 25% 
ethyl bromide and 30% ethyl iodide. The top trace (a) is 
the normal 60 MHz ‘H spectrum of the mixture. The 
centre block (b) is the result S(w,, 02) of a Carr- 
Purcell type A spin-echo experiment (i.e. 90”jt,-180”- 
$,-acquire for t2) with variation oft,. Taking sections 
parallel to the wt axis it is possible to pick out all three 
CH, triplets and all three CH, quartets in the correct 
(45 : 25 : 30) intensity ratios. 

Since the spectrum of each compound is first-order, 
it is possible to take a projection on to the w2 axis 
which results in all the signals from a given multiplet 
falling on top of each other and giving a proton NMR 
spectra free from proton-proton coupling. This is 
shown in trace (c).(~” 

5. MANIPULATIONS AFTER FOURIER 

TRANSFORMATION 

5.1. Phase Correction of Spectra 

5.1.1. Introduction. It has long been recognised that 
the Fourier transform obtained from a phase-sensitive 
detected free induction decay will in general consist 
not only of the c-mode spectrum and that phase 
correction is required to compensate for the transfer 
function of the detection system. This arises primarily 
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FIG. 21. An example of a two-dimensional J resolved spectrum obtained by double Fourier transformation 
following data collection using a Carr-Purcell type A pulse sequencet5*’ (a)A6OMHz’HNMRspectrumofa 
mixture of 45% C,H,CI. 25% C,H,Br and 307” C,H,I. (b) A 2-D NMR spectrum computed from 64 single 
echoes represented by 64sample values.(c)A broad-band decoupled spectrum obtained by projecting the 2-D 
spectrum on to the m2 axis. A coarse digitisation of the 2-D spectrum was used to partially suppress the 
backgroundsignals.(ReproducedfromJ. Chem.Phys.64,4226(1976)withpermissionofthecopyright holder). 

from the hardware filter network used to discriminate 
against noise being folded back into the spectrum 
window and by the pre-acquisition delay necessary to 
avoid pulse break through and amplifier dead time. A 
transfer function, h(w), of the type 

h(w) = k exp i(a, + aio) (53) 

is appropriate since it is obeyed by idea1 
Butterworth filters below cut-off.‘53) 

In commercial spectrometers phase correction is 
conventionally achieved for the ith point of the 
absorption (A) and dispersion modes (D) as 

Y,(i) = Ri cos Ui - Ii sin Ui (54) 

Y,(i) = Ri sin Oi + Ii cos Oi. (55) 

Ri and Ii are the ith values of the real and imaginary 
parts of the Fourier transform spectrum. Two angles 
are required, a zeroth order (&,) and a first order (di) 
and then 

Oi = &, + 2id,fN. (56) 

The two angles $~o and 4, are converted by the 
computer into binary numbers(say 12 bits)and used as 
indices for a sine look-up table, which conventionally 
takes up some of the available computer memory. 

After phase correction it is usual to display the 
absorption spectrum (v-mode) but the dispersion (u- 
mode) spectrum is usually also available. An altema- 
tive display mode is that of the magnitude or absolute 
value spectrum, (u* + u*)r”. This approach, which is 
independent of phase angles, is useful when measuring 
spinecho spectra of coupled systems and in many 
applications of 2-dimensional FTNMR. 

Recently a number of papers have appeared on the 
analysis of the pattern produced when an absorption 
spectrum is plotted against its dispersion 
component. w-~‘) This presentation apparently pro- 
vides a means of distinguishing various line broaden- 
ing mechanisms since for a pure Lorentzian the result 
should be a semi-circle. Deviations from the semi- 
circle allow a distinction between, for example, an 
unresolved spread in chemical shifts and chemical 
exchange broadening. More recently the effects of 
digitisation, noise, truncation and zero-filling on the 
accuracy of the results, have been reported.“@ 

5. I .2. Sine look-up rubles. It is only necessary to store 
the sine values between 0 and x/2 and then for a given 
setting of a phase angle potentiometer the knob value 
is read by an ADC and converted to the appropriate 
binary sequence, say h. Thus for an N point spectrum 
with c(h) representing the contents of location b: 
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0 < h < N/4 sin 0 = r(h) (57) 

NJ4 -I- 1 I h < N/2 sin 0 = c(N/2 - h) (58) 

N/2 + 1 < h < 3N/4 sin 0 = -c(b) (59) 

3Nf4 + 1 I h < N sin 0 = --c(N/2 - h). (60) 

Consequently only N/4 sine table entries are needed 
for 2N points in the original time domain decay since 
half the points are imaginary after the Fourier 
transformation. 

Interpolation between the entries in a sine look-up 
table is also possible and this leads to the question of 
how few entries are needed before distortions and 
artefacts are introduced. Cooper et al.@‘) have per- 
formed calculations on a synthesised high dynamic 
range 16k data point spectrum with a sine look-up 
table varying in length from 4096 down to 16 entries. 
Linear interpolation was used between entries and no 
difference was detected in the resulting spectra for any 
length of the sine table after making allowances for 
errors detected in the exponentiation routine of the 
DEC-10 FORTRAN package used to program the 
calculation. In fact Kaiserc5s’ has analysed the errors 
expected and shown that they should be of the order of 
a few bits in a 16 bit word even for a sine table length of 
32 entries for a 16k data table. The error, A(x), 
introduced by linear interpolation of a function y(x) 
between values y(x,) and fix,+ ,) is a second order 
polynomial that is zero at x, and x,+ 1 

(4 = 
Y"(%X - x,)(x - x.+1) 

2 
, (61) 

where y”(X) is the second derivative at some X between 
x, and x.,,. For an FID f(t) with a frequency 
spectrum sine transform F(w) that which is computed 
is the discrete form of 

s 

+m 
F(w) = f(t) [sin (wt) - A(wt)] dt. (62) 

-ca 

The error in the Fourier transform is then within E 
where 

Taking h = x,+ , - x, and for a sine table of M entries 

Thus 

M = 512 256 128 64 32 

A _=2-20 z-18 z-16 2-M z-12, 

The integral j If(t) 1 dt is less than the sum of all lines in 
the spectrum. The calculation should be repeated for 
each of the log, N passes of the fast Fourier transform 
algorithm. Thus the total error E might be multiplied 
by log2 N or if scaling occurs between all passes, by a 
factor of two. For a quarter length sine-table with 128 
entries an error of the order of 2- l5 of the true 
spectrum is expected whilst for a 64 point entry the 

error should be four times greater, but these errors are 
of the same order ofmagnitude as the noise introduced 
by the Fourier transform itself for a 16 bit word and 
may only be noticeable when using longer word length 
computers. 

Akittfs’) has recently proposed a trigonometric 
based interpolation using a 64 entry sine table in order 
to save on memory space. This interpolation of course 
takes longer than the linear method but calculates 
sines and cosines in one pass. Accuracy is again to 
about 2-14 or 22” and the total program plus table 
only occupies 128 words. 

5.1.3. Automatic phase correction. The possibility of 
performing automatic phase correction was first raised 
by Ernsttho’ who demonstrated the results of using the 
Hilbert transform. Hilbert transformation relates the 
real and imaginary parts of the frequency response 
function of a linear system (e.g. a single pulse Fourier 
transform NMR experiment with the spin system at 
equilibrium). Because the Hilbert transform effectively 
provides a 90” phase shift, in order to gain some 
arbitrary phase change it is necessary to take a linear 
combination of the original spectrum with a pro- 
portion of the Hilbert transform. Since the dispersion 
component of a spectrum has zero integrated intensity 
then the proportions used in the linear combination of 
spectra are varied until a maximum intensity is found, 
giving a pure absorption spectrum. However, this 
method was found to be very unstable as a result of 
spectra1 noise and because of deviations from a level 
baseline. 

Another possible method for fully automatic phase 
correction has been demonstrated by Neff, Ackerman 
and Waugh’s3’ using a method that requires precali- 
bration of the detector transfer function. This method 
has the advantage of removing artefacts arising from 
mismatched channels when using quadrature phase 
detection. 

5.1.4. Phase correction in 2D-NMR. In Section 4.4 
we have given a description of the procedure involved 
in obtaining a two dimensional NMR spectrum which 
appears in four quadrants denoted by Y(o,, w,), 
S’(wi, w,), P(w,, w2) and S”“(o,, 02) where c, s refer 
to cosine and sine parts of each Fourier transform. 
Clearly any phase adjustment of a 2D spectrum is 
going to be more complicated than that for a 1D 
spectrum and to overcome this, in many cases it is 
usual to present an absolute value mode spectrum. 
However, to phase a 2D spectrum involves taking 
combinations of the four parts of the spectrum with 
angles which, as in normal NMR, involve two para- 
meters, a constant term and a frequency dependent 
term for each frequency dimension w1 and 02. 

Since absorption mode spectra have narrower line- 
shapes and less distortions from overlapping tran- 
sitions, elforts have been made to alter the line-shapes 
such that phasing is possible. For spin-echo spectra 
obtained from linear combinations of the four quad- 
rants, absorption lines show the phenomenon of 
“phase-twist” which results from a resonance posses- 

. 
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sing different proportions of absorption and disper- 
sion components in progressive slices through the line. 
Several experimental methods(65) have been proposed 
to modify the natural ZD-lineshape to give a double 
Lorentzian form 

S’(w,, wl) = A cos (CL - 6,) cos (fi - tQ/4D,D2 (65) 

where 

0: = A; + (~xAw,)~ ; D; = A; + (27~Aw,)~ 

sin u = ZnAo,/D, ; sin f3 = 2nAw,lD,, 

with 1,,1, as the exponential time constants for the 
two decays in the time domain spectrum. The angle 
0 = Oi + O2 represents a phase error introduced by 
the instrument. In general this will be an unknown 
function of the two frequencies w1 and 02. Levitt and 
Free.man(61) have recently described a practical 
method for calculating the phase corrections required. 
However, the computations are lengthy and involved 
and if the sole reason for using an absorption presen- 
tation is to narrow the spectral lines then Gaussian 
deconvolution with the absolute value presentation 
provides an alternative.(42s65) 

5.2. Spectrum Subtraction 

In general spectrum subtraction can be a very useful 
technique when studying mixtures or for quantitative 
measurements on small molecules, which give rise to 
sharp lines, in the presence of macromolecules which 
give only relatively broad resonances. Also subtraction 
can be performed on both time and frequency domain 
spectra, the former having dynamic range advantages. 
This point is illustrated in Figure 22 which shows the 
methyl region of the spectrum obtained from the 

antihypertensive agent bretylium tosylate dissolved in 
water, containing a small amount of ethanol. 

Br 

a 
Cl-J, I+, TOSC, 

Et 
Trace (a) shows the total methyl spectrum with 

vertical expansions of x 32 and x 200. The large triplet 
arises from the methyl protons of the ethyl group in: 
and the small triplet is from the methyl protons in 
residual ethanol. In (b), the top trace repeats the 
highest expansion in (a) where the vertical bit levels are 
clearly seen in the noise. This results from using a 16 bit 
Fourier transform process which provides the domin- 
ant source of the noise. The centre tracr: results from 
subtracting a spectrum of the pure compound in the 
frequency domain. The bottom trace shows the results 
of subtracting the two time domain spectra acquired 
under identical conditions. This causes the time 
domain dynamic range to be lowered and hence the 
noise introduced by the 16 bit Fourier transform is 
reduced to within the spectral noise level. The traces in 
(c) correspond to those in (b) and give a comparison 
using a 32 bit Fourier transform routine. Here Fourier 
transform noise is insignificant in both cases. 

5.3. Baseline Correction 

5.3.1. Introduction. Most forms of baseline correc- 
tion use a method which requires subtraction of a 
calculated function from a spectrum. This is a par- 
ticular application of spectrum subtraction discussed 
in the previous section. The various methods docu- 
mented in the literature are described in this section 
and some comparisons are presented. 

5.3.2. Definition of baseline. Instrumental instability 

a b C 

FIG. 22. Demonstration or spectrum subtraction in time and frequency domains using a sample of bretylium 
tosylate (see text) in H,O containing a small amount ofethanol. Trace (a) is the total methyl spectrum where 
the small triplet is from ethanol. The top trace in (b) repeats that in (a) and shows the noise introduced by the 
transform. The centre trace shows the result of subtracting a spectrum orthe pure compound in the frequency 
domain and the bottom trace the time domain subtraction. The traces(c) correspond to those of(b) and give a 

comparison using a 32 bit Fourier trdnSfOrm. 
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and spurious resonances (e.g. probe ringing) can give 

rise to broad variations in a spectrum baseline. In 
order to improve the accuracy of any subsequent data 
reduction it is desirable to remove these broad en- 
velopes. A number of computational methods have 
been developed for Fourier transform NMR data 
packages but in general they all rely on the same 
procedure. Firstly the operator identifies regions of 
true baseline, secondly, a smooth curve is fitted to these 
regions and this computed curve is then subtracted 
from the original spectrum. This method has been used 
with much success in the authors’ laboratory and in 
this procedure a series of channel addresses and their 
contents are selected by the operator. In case any of the 
channel addresses which are taken to be true baseline 
in fact contain an unnoticed spurious value, e.g. a large 
noise spike, it is possible to take the average value from 
the address chosen plus a previously specified equal 
number either side. Next, a curve is fitted to the 
selected averaged intensity values using the Lagrange 
interpolation method, where Yb((s), a polynomial of 
degree n, is the calculated intensity value at addressS, 

and fi are the n + 1 chosen addresses. 

W”u-) = (S-fo)cf-f,)cf-f2)...~-~) (67) 

WU) = n (fi - .I& (68) 
lrfi 

k=O 

The correction is performed by replacing Y(fl in each 
channel f by Y’(fl where 

Y’W = Y(J) - r,cn. (69) 

For correction of very steep slopes, it is necessary to 
use only the address chosen and not to average over 
adjacent locations. Clearly, the calculation of a poly- 
nomial of degree n where n may be 2 20 would involve 
a great deal of computational effort and the usual 
approximation is to calculate a running average cubic 
between any four adjacent points : i.e. a cubic is fitted 
to the first four points chosen as baseline and values 
are calculated for the baseline between points two and 
three. Then point one is dropped and the fifth chosen 
baseline point is included, a new cubic is calculated and 
is used to give the _r values for the baseline curve 
between points three and four. This process is repeated 
until a set of 4‘ values is obtained for the whole region of 
interest. These are then subtracted from the spectrum 
to give the baseline flattened result. 

A much simpler method of baseline correction used 
in some commercial data systems has only two 
variable parameters, namely a d.c. offset and a slope 
correction. 

Other methods of baseline correction are also 
available and examples of all the methods are shown in 
Figure 23. This diagram shows the ‘H NMR spectrum 
of benzene dissolved in the nematic mesophase, Phase 

V. The top trace (a) is the experimental spectrum 
showing the broad background from the liquid crystal 
solvent. By choosing points by eye to be baseline the 
polynomial curve In (b) can be calculated. The dif- 
ference (a) - (b) is shown as trace (c). Trace (d) is the 
convolution dilference result obtained by subtracting a 
proportion of a broadened form of (a) from itself. Trace 
(e) is the result of applying a Gaussian deconvolution 
function to severely over-enhance the sharp lines and 
then to display the absolute value mode spectrum.t4*) 
Finally, the lowest trace(J) is obtained when the FID 
is left shifted by 15 locations to remove most of the 
intensity information apertaining to the broad com- 
ponents. Note that the spectrum contains an artefact, 
marked with an asterisk, which appears to have a 
dispersive phase. Magnitude deconvolution removes 
this peak presumably because its absorption com- 
ponent is broader than the lines arising from the 
benzene. This must be taken as a caveat that spectral 
information can be lost during baseline flattening 
exercises. 

Attempts have been made to automate the first step 
of any baseline correction procedure, i.e. to determine 
the regions of true baseline without the intervention of 
the operator. Pearson t6*) has suggested an iterative 
automatic method of baseline correction based on the 
assumption that a point in a digitised spectrum is 
considered to be part of the baseline if it lies within 
+oo, of the x-axis where Q, is a “baseline standard 
deviation” and v is a positive constant (in practice 
between 2.0 and 3.0). The term rri is the iteratively 
calculated standard deviation of the Y values which lie 
within + uur of the x-axis. 

2 EYCfi)12h(ual - I ycfl) I) 

i i 

112 
of= i 1 9 (70) 

1 +Ch(ua, -IY(fi)l) 

where h(z) = 1 if z > 0 or h(z) = 0 if z < 0. The value of 
u in practice is taken to be 4.0. The value of pi 
converges to a well defined limit and then a smooth 
function g(fl is fitted to this automatically derived 
baseline (i.e. -vcri < Y(fi) < +~a,) which is sub- 
tracted from the original spectrum to give the flattened 
result. The algorithm has the flowchart given in Figure 
24. A correction was found to be negligible if 1 g(J) 1 
< O.l25a, for all values off. In order to provide the 
most efficient use of the computer g(J) is expressed as a 
linear combination of a finite ortho-normal set of 
functions. 

i.e. 

where i runs over all N fi values in the spectrum. 

cj=C y(AJL~A) (73) 
i' 
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FIG. 23. A demonstration of the various methods of achieving baseline flattening. (a) The 90 MHz ‘H NMR 
spectrum of benzene dissolved in the nematic mesophase, Phase V; 62SO Hz spectral width, 24”C, 8192 data 
points. (b) A theoretical polynomial calculated by fitting points chosen to be baseline. (c) The result of (a) 
minus(b). (d) The convolution difference result obtained by subtracting a proportion of a broadened form of 
(a) from itself to yield approximately the same signal-to-noise ratio. (e) The result of applying the Gaussian 
deconvolution weighting function and presenting the absolute value spectrum.(l) Left shifting the FID by 15 

data points before Fourier transformation. 

where i’ runs over only those values for which 1 Y(J) 1 
5 uoi. This method of defining the baseline has been 
used in conjunction with a cubic polynomial and an 

eight point Fourier coefficient function.‘62) 

5.4. Spectrum Smoothing 

Occasionally, in order to save remanipulation of an 
FID or for reducing output during line-listing, it is 
advantageous to smooth a Fourier transformed spec- 
trum and this is achieved through the use of an m-point 
moving average method; i.e. for a three point moving 
average each data point is taken to be the sum of half 
its own contents plus a quarter of those on both sides of 
it, the average being calculated progressively through 
the spectrum. Usually the operator specifies m, the 
number of data points for the average. In the authors’ 
laboratory a complementary approach has been taken 
in that a triangular smoothing function has been used 
in which it is possible to specify the width of the 
triangle at half height in Hz. The smoothing for a 
particular point is then taken over the nearest odd 

number of channels (2m + 1) below the specified 
width, the apex of the triangle being at the middle point 
(n). The smoothing function is 

“2 w-f m--In--f1 

F’(n) = f=“;Fm 
m ] 

,:_.[“-‘:-“I 

(74) 

Mathematically, the operation represents convolution 
with a triangle and if repeated several times to provide 
greater and greater smoothing, the peaks will eventu- 
ally resemble triangles. 

5.5. fnfeyration 

Integration, the measurement of peak areas, is 
possible if the spectrum is presented in absorption 
mode, phase corrected and baseline flattened. The 
integration trace is simply the result, at any location, of 
adding together the contents of all previous locations. 

Programs available on commercial systems usually 
allow the operator to improve an integral trace by 
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I calculate u, Of au points 
with -uuO~Y(fi)c+uuO I 

I fit curve g(f) to all points 
with -vqcY(fi)< +w, I 

Ye8 

0 STOP 

FIG. 24. Flowchart describing an automatic method for 
baseline flattening.@“’ 

applying a d.c. offset correction to remove any slope 

and a ramp correction to remove simple curvature. In 
most cases it is possible to print out integral values and 
at least one system allows a least squares fit of chosen 

integral data to predict the number of nuclei giving rise 
to each band.‘h3’ 

Many users only require the accuracy of integral 
data to be such that it is possible to distinguish the 
number of nuclei contributing to a particular reson- 
ance, but NMR is now increasingly used for quantitat- 
ive assays and a discussion of the potential accuracy of 
integrals is of paramount importance. It is possible, if 
the conditions of the experiment are ill-chosen, for an 
integral value to depend on the number of computer 
word bits defining the peak height and on the number 
of spectral locations over which the integral is 
measured. Figure 25 shows the integral measured, I,, 
compared to the true integral, I,, as a function both of 
the number of counts of signal defining a peak and of 
the number of spectral channels, I,,, over a line. 

The diagram was produced by digitising a 
Lorentzian line out to f 10 times the linewidth at half 
height (at this point the band height has reduced to 
about 1% of the maximum) using up to 8 bits with 
various numbers of points over this frequency spread. 
The shaded areas show the regions into which the 
measured integral value would fall depending on the 
position ofthe steps in the frequency axis relative to the 
peak maximum. 

A number of conclusions can be drawn from this 
figure. Firstly, in order to obtain an absolute accuracy 
of about 2% the signal must be defined by 6 bits. An 
error of approximately 0.7% results if the signal is 
defined by 8 bits. Of course, for a ratio of signal heights, 
provided that they are similar, the errors are much less. 
The number of data points over which the integral is 
taken can also be a factor contributing to an inac- 
curate result. For example, for a signal defined by 8 bits 

32 

FIG. 25. The accuracy of digital integration as a function of the number ofdata points, I,, over a Lorentzian 
peak and as a function of the number of counts defining the signal height. I&, represents the ratio of the 

measured to the true intensity. 
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integrated over 60 points the measured area will be low 
by up to 1.4% and for a ratio of two similar signal 
heights, up to 2.8%. If one wishes to measure the ratio 
of the areas of two signals with dissimilar heights, then 
the result may be in serious error. There will be a 
large error band on the measured small signal height 
when using only a few data points and therefore it is 
necessary to integrate over as large a number of points 
as possible. If this is achieved, then there will be an 
increasing error in the measured area ratio as the 
number of bits defining the small signal decreases. For 
example, if one wishes to measure the area of some 
small peak by comparing it with that from a large 
resonance, there could be a stringent dynamic range 
requirement. For a small peak only 4 bits high and a 
large peak of > 8 bits the integral will be low by about 
8% assuming moreover that there are several hundred 
points over the peaks. Using a 20 bit word computer 
for the same example reduces the errors to insignificant 
proportions. For a real spectrum containing noise 
there is an additional source of error in that it may be 
difficult to define regions of true baseline within the 
noise level. 

5.6. Plotting 

Output from the computer to provide a permanent 
record is usually to either a recorder stepped digitally 
in the x-direction with an analog voltage applied to the 
Y-axis or to a full digital plotter with digital output in 
both x- and y-directions. 

The analog voltage for a recorder is output via a 
digital-to-analog converter, DAC. The simplest design 
of the voltage output type, consists of a series of 
resistors connected to an operational amplifier, the 
resistors being weighted in a binary fashion and each 
one is connected either to the reference signal or to 
ground depending on the state of each bit in the 
computer word to be output. For details of the 
parameters which define the specification of a DAC, 
the reader is referred to suitable electronics 
textbooks.‘64) 

Usually, output to a recorder does not involve the 
full computer wordlength-typically a DAC will have 
a 12 bit resolution-so a computer word will be scaled 
or offset before output. The plot time is also set by 
software, the recorder either being stepped by pulses 
from the computer or by adecreasing voltage obtained 
via a DAC from a computer word in which the 
contents are monotonically stepped down. 

Two modes of plotting are usually possible. The first 
method gives a constant speed in the x-direction. This 
causes the pen to speed up dramatically when it has to 
draw a large sharp peak, leading to poor peak 
definition and distortion. This is overcome by the 
“autoslew” or “constant pen speed” technique. Here 
the pen movement is slowed down directly in propor- 
tion to the distance it has to travel between adjacent y 
values. For example, in the authors’ laboratory, when 
plotting in this mode the computer takes an average 

difference between the values in the vertical axis for the 
current point and an even number of adjacent points 
on either side. This running average compared to that 
for the previous data points serves to either speed up or 
slow down the pen travel by defining for point p a 
variable rate, R. For a calculation over 2N + 1 points, 

Ra&Cl(Y,-,-y,-,+J 

+ (YI_-NCI - Yp-NC21 + ... + (Yp+N-l 

- Yp+Nl II (751 

a & CIY,+~ - Y,-,I], (761 

where y, is the currently plotted value. Point y,_, is 
then dropped and point Y~+~_ t included in order to 
plot point yP+ i. 

Output is often arranged through a double buffering 
method such that, for example, 128 words are trans- 
ferred to one output buffer, and whilst these are being 
plotted a second 128 words are entered into a second 
buffer. As soon as the first buffer is empty the second 
buffer is output and during this operation the next 128 
words are read into the first buffer. 

Another refinement found on many commercial 
spectrometers is a rapid up-down movement of the pen 
in order to get the ink flowing prior to commencement 
of plotting. Use of computer type graph-plotters has 
now caused this gimmick for punching holes in paper 
to wane. 

The new, digital, computer plotters being very fast, 
are suited to the presentation of 2D-NMR spectra. 
Here a three-dimensional effect is created by stacking a 
set of spectra each offset in the x and y-directions by a 
small amount as in a plot for a Ti determination. The 
presentation is greatly improved if it is possible 
to remove those sections of a trace which would 
otherwise be obscured “behind” another peak. 
Bodenhausen et aLoo) have described this process as 
“whitewashing” and it involves storing they values of 
all previous traces and raising and lowering the pen at 
the appropriate points after making allowance for any 
interpolation in the plot output. Although information 
is not usually lost, this routine must be suppressed if 
negative peaks are to be observed. An example of 
“whitewash” is shown in Figure 21.‘52’ 

Finally, Figure 26 shows different methods of im- 
proving the plotted output. In many cases the number 
of spectrum channels output will be many times less 
than the number of x steps on the recorder. In this case 
interpolation between the points to be output can lead 
to a better appearance of the spectrum and in some 
cases to a better definition of the peak maxima. If no 
interpolation is carried out a staircase of points is 
produced; this is improved by using a linear interp- 
olation between points. An even better definition is 
obtained by fitting a cubic to any four points and 
outputting an interpolated curve between the middle 
two points. The process is repeated by dropping the 
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6. CONCLUDING REMARKS AND 

ACKNOWLEDGEMENTS 

In this article we have attempted to highlight the 

criteria which should be considered before measuring 
an FT NM R spectrum, to show the limitations of using 
a digital Fourier transform and to perhaps illustrate 
how to get the best possible results. Extensive details 
are available(7*‘4’ for optimising NMR spectral para- 
meters and we have not discussed them here. We have 

also given quite extensive coverage to the diffkulties 
presented by measuring spectra in a high dynamic 
range situation and discussed the requirements for 
successful signal averaging in this case. A number of 
different types of resolution enhancement functions 
have been described in the literature and we have 
attempted a realistic comparison. The implications of 
using double length integer Fourier transforms have 
also been set out. It is clear, however, that it is not 
possible to cover every aspect of even the small 
practical area of NMR signal processing and new 
developments will continue to be made particularly as 
they apply to 2-dimensional FTNMR. 

We are grateful to Mr. Alan Strutt for extended 
discussions on the theory and operation of the elec- 
tronic modules in a FTNMR spectrometer. Thanks 
are also due to Mr. A. J. Wyatt of Kratos-Instem Ltd., 
for the implementation in our FTNMR data system of 
many of the routines described here. We also ac- 
knowledge the encouragement of Dr. A. J. Everett 
during the preparation of this article and we thank the 
Wellcome Foundation Ltd., for permission to publish 
this material. 

FIG. 26. The effect of interpolation on the appearance and 
accuracy of a plotted spectrum. (a) No interpolation,(b) linear 
interpolation between points, (c) cubic interpolation, (d) 

analog input. 

first point and including a fifth. An example is shown in 
Figure 26 for (a) no interpolation, (b) linear interp- 
olation, (c) cubic interpolation and (d) the analog 
input. 

Finally, some mention should be made that con- 
sideration must be given to the number of bits defining 
both the x and y axes of any plotter. Usually about 12 
bits are output in the vertical direction and 13 bits in 
the horizontal. For computer digital plotters where 
chart lengths of several metres are possible, spectral 
interpolation and output to much more than 13 bits 
would be necessary to provide a reasonable spectral 
appearance. 

5.1. Peak Print-Out 

All commercial programs have a facility for printing 
out the positions of peak maxima. The simplest is a 
straightforward list of those locations, scaled into 
frequency terms, which break above a given threshold; 
a peak is defined by the criterion that the locations on 
either side will have a lower y value. A more accurate 
method of assessing a peak maximum lies in calculat- 
ing the centroid position from the highest point and its 
two adjacent locations, assuming a triangular top to 
the peak. Other more accurate interpolations have 
been developed and these can give better estimates of 
peak maxima (see for example the cubic interpolation 
for plotting, Section 5.5). 
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